利用單片機PWM信號進行舵機控制(圖)
基于單片機的舵機控制方法具有簡單、精度高、成本低、體積小的特點,并可根據(jù)不同的舵機數(shù)量加以靈活應用。
在機器人機電控制系統(tǒng)中,舵機控制效果是性能的重要影響因素。舵機可以在微機電系統(tǒng)和航模中作為基本的輸出執(zhí)行機構,其簡單的控制和輸出使得單片機系統(tǒng)非常容易與之接口。
舵機是一種位置伺服的驅動器,適用于那些需要角度不斷變化并可以保持的控制系統(tǒng)。其工作原理是:控制信號由接收機的通道進入信號調制芯片,獲得直流偏置電壓。它內部有一個基準電路,產(chǎn)生周期為20ms,寬度為1.5ms的基準信號,將獲得的直流偏置電壓與電位器的電壓比較,獲得電壓差輸出。最后,電壓差的正負輸出到電機驅動芯片決定電機的正反轉。當電機轉速一定時,通過級聯(lián)減速齒輪帶動電位器旋轉,使得電壓差為0,電機停止轉動。
圖1 舵機的控制要求
舵機的控制信號是pwm信號,利用占空比的變化改變舵機的位置。一般舵機的控制要求如圖1所示。
單片機實現(xiàn)舵機轉角控制
可以使用fpga、模擬電路、單片機來產(chǎn)生舵機的控制信號,但fpga成本高且電路復雜。對于脈寬調制信號的脈寬變換,常用的一種方法是采用調制信號獲取有源濾波后的直流電壓,但是需要50hz(周期是20ms)的信號,這對運放器件的選擇有較高要求,從電路體積和功耗考慮也不易采用。5mv以上的控制電壓的變化就會引起舵機的抖動,對于機載的測控系統(tǒng)而言,電源和其他器件的信號噪聲都遠大于5mv,所以濾波電路的精度難以達到舵機的控制精度要求。
也可以用單片機作為舵機的控制單元,使pwm信號的脈沖寬度實現(xiàn)微秒級的變化,從而提高舵機的轉角精度。單片機完成控制算法,再將計算結果轉化為pwm信號輸出到舵機,由于單片機系統(tǒng)是一個數(shù)字系統(tǒng),其控制信號的變化完全依靠硬件計數(shù),所以受外界干擾較小,整個系統(tǒng)工作可靠。
單片機系統(tǒng)實現(xiàn)對舵機輸出轉角的控制,必須首先完成兩個任務:首先是產(chǎn)生基本的pwm周期信號,本設計是產(chǎn)生20ms的周期信號;其次是脈寬的調整,即單片機模擬pwm信號的輸出,并且調整占空比。
當系統(tǒng)中只需要實現(xiàn)一個舵機的控制,采用的控制方式是改變單片機的一個定時器中斷的初值,將20ms分為兩次中斷執(zhí)行,一次短定時中斷和一次長定時中斷。這樣既節(jié)省了硬件電路,也減少了軟件開銷,控制系統(tǒng)工作效率和控制精度都很高。
具體的設計過程:例如想讓舵機轉向左極限的角度,它的正脈沖為2ms,則負脈沖為20ms-2ms=18ms,所以開始時在控制口發(fā)送高電平,然后設置定時器在2ms后發(fā)生中斷,中斷發(fā)生后,在中斷程序里將控制口改為低電平,并將中斷時間改為18ms,再過18ms進入下一次定時中斷,再將控制口改為高電平,并將定時器初值改為2ms,等待下次中斷到來,如此往復實現(xiàn)pwm信號輸出到舵機。用修改定時器中斷初值的方法巧妙形成了脈沖信號,調整時間段的寬度便可使伺服機靈活運動。
為保證軟件在定時中斷里采集其他信號,并且使發(fā)生pwm信號的程序不影響中斷程序的運行(如果這些程序所占用時間過長,有可能會發(fā)生中斷程序還未結束,下次中斷又到來的后果),所以需要將采集信號的函數(shù)放在長定時中斷過程中執(zhí)行,也就是說每經(jīng)過兩次中斷執(zhí)行一次這些程序,執(zhí)行的周期還是20ms。軟件流程如圖2所示。
如圖2 產(chǎn)生pwm信號的軟件流程
如果系統(tǒng)中需要控制幾個舵機的準確轉動,可以用單片機和計數(shù)器進行脈沖計數(shù)產(chǎn)生pwm信號。
脈沖計數(shù)可以利用51單片機的內部計數(shù)器來實現(xiàn),但是從軟件系統(tǒng)的穩(wěn)定性和程序結構的合理性看,宜使用外部的計數(shù)器,還可以提高cpu的工作效率。實驗后從精度上考慮,對于futaba系列的接收機,當采用1mhz的外部晶振時,其控制電壓幅值的變化為0.6mv,而且不會出現(xiàn)誤差積累,可以滿足控制舵機的要求。最后考慮數(shù)字系統(tǒng)的離散誤差,經(jīng)估算誤差的范圍在
pwm相關文章:pwm原理
評論