關(guān) 閉

新聞中心

EEPW首頁 > 工控自動化 > 設(shè)計應(yīng)用 > 可編程邏輯器件在數(shù)字系統(tǒng)中的應(yīng)用

可編程邏輯器件在數(shù)字系統(tǒng)中的應(yīng)用

作者: 時間:2006-05-07 來源:網(wǎng)絡(luò) 收藏

摘要:介紹了可編程邏輯器件在數(shù)字信號處理系統(tǒng)中的應(yīng)用。并運用VHDL語言對采用Lattice公司的ispLSI1032E可編程邏輯器件所構(gòu)成的乘法器的結(jié)構(gòu)、原理及各位加法器的VHDL作了詳細的描述。該乘法器的是大特點是節(jié)省芯片資源,而且其運算速度取決于輸入的時鐘頻率。

本文引用地址:http://butianyuan.cn/article/244668.htm

關(guān)鍵詞:數(shù)字信號處理 乘法器VHDL PLD

1 引言

隨著半導(dǎo)體技術(shù)的發(fā)展,可編程邏輯器件在結(jié)構(gòu)、工藝、集成度、功能、速度和靈活性等方面有了很大的改進和提高,從而為高效率、高質(zhì)量、靈活地設(shè)計數(shù)字系統(tǒng)提供了可靠性。CPLD或FPGA技術(shù)的出現(xiàn),為DSP系統(tǒng)的設(shè)計又提供了一種嶄新的方法。利用CPLD或FPGA設(shè)計的DSP系統(tǒng)具有良好的靈活性和極強的實時性。同時,其價格又可以被大眾接受。由于乘法器在數(shù)字信號處理系統(tǒng)中具有廣泛的應(yīng)用,所以本文以乘法器的處理系統(tǒng)中具有廣泛的應(yīng)用,所以本文以乘法器的設(shè)計為例,來說明采用可編程邏輯器件設(shè)計數(shù)字系統(tǒng)的方法。如果想使系統(tǒng)具有較快的工作速度,可以采用組合邏輯電路構(gòu)成的乘法器,但是,這樣的乘法器需占用大量的硬件資源,因而很難實現(xiàn)寬位乘法器功能。本文這種用于序邏輯電路構(gòu)成的乘法器,既節(jié)省了芯片資源,又 能滿足工作速度及原理的要求,因而具有一定的實用價值。

2 系統(tǒng)構(gòu)成

該乘法器通過逐項移位相加來實現(xiàn)乘法功能。它從被乘數(shù)的最低開始,若為1,則乘數(shù)左移后再與上一次的和相加;若為0,左移后與0相加,直到移到被乘數(shù)的最高位。圖1是該乘法器的系統(tǒng)組成框圖。該控制模塊的STAR輸入有兩個功能:第一個功能是將16位移位寄存器清零和被乘數(shù)A[7…0]向8位移位寄存器加載;第二個功能為輸入乘法使能信號。乘法時鐘信號從CLK輸入,當(dāng)被乘數(shù)加載于8位移位寄存器后,它由低位到高位逐位移出,當(dāng)QB=1時,選通模塊打開,8位乘數(shù)B[8…0]被送入加法器,并與上一次鎖存在16位鎖存器中的高8位相加,其和在下一個時鐘上升沿被鎖存到鎖存器內(nèi);當(dāng)QB=0時,選通模塊輸出為全0。如此循環(huán)8個時鐘脈沖后,由控制模塊控制的乘法運算過程自動中止。該乘法器的核心元件是8位加法器,其運算速度取決于時鐘頻率。

3 加法器的實現(xiàn)

加法器的設(shè)計需要考慮資源利用率和進位速度這兩個相互矛盾的問題,通常取兩個問題的折衷。多位加法器的構(gòu)成有并行進位和串行進位兩方式,前者運算速度快,但需占用較多的硬件資源,而且隨著位數(shù)的增加,相同位數(shù)的并行加法器和串行加法器的硬件資源占用差距快速增大。實踐證明,4位二進制并行加法器和串行加法器占用的資源幾乎相同,因此,由4位二進制并行加法器級聯(lián)來構(gòu)成多位加法器是較好的折衷選擇。以下為由兩個4位二進制并行加法器級聯(lián)構(gòu)成8位二進制加法器的VHDL程序:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ADDER8B IS

PORT (CIN:IN STD_LOGIC;

A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

S :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

OUT :OUT STD_LOGIC);

END ADDER8B;

ARCHITECTURE struc OF ADDER8B IS

COMPONENT ADDER4B

PORT (CIN4: IN STD_LOGIC;

A4 : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

B4 :IN STD_LOGIC_VECTOR(3 DOWNTO 0);

S4 : OUT ST_D_LOGIC_VECTOR(3 DOWN-TO 0);

COUT4 : OUT STD_LOGIC);

END COMPONENT;

SIGNAL CARRY_OUT : STD_LOGIC;

BEGIN

U1:ADDER4B

PORT MAP(CIN4=>CIN,A4=>A(3 DOWNTO 0),B4=>B(3 DOWNTO 0),S4=>S(3 DOWNTO 0),COUT4=>CARRY_OUT);

U2 :ADDER4B

PORT MAP(CIN4=>CARRY_OUT,A4=>A(7 DOWNTO 4),B4=>B(7 DOWNTO 4),S4=>S(7 DOWNTO 4),COUT4=>COUT);

END struc;

在上面的VHDL描述中,ADDER4B是一個4位二進制加法器,其VHDL描述是:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ADDER4B IS

PORT (CIN4 :IN STD_LOGIC;

A4 :IN STD_LOGIC_VECTOR(3 DOWNTO 0);

B4:IN STD_LOGIC_VECTOR(3 DOWNTO 0);

S4:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

COUT4:OUT STD_LOGIC;

EAND ADDER4B;

ARCHITEC_TURE behav OF ADDER4B IS

SIGNAL SINT :STD_LOGIC_VECTOR(4 DOWNTO 0);

SIGNAL AA,BB:STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN

AA=‘0’A4;

BB=‘0’B4;

SINT=AA+BB+CIN4;

S4=SINT(3 DOWNTO 0);

COUT4=SINT(4);

END behav;

4 結(jié)束語

本文采用基于EDA技術(shù)的自上而下的系統(tǒng)設(shè)計方法,其設(shè)計流程如圖2所示。該乘法器的最大優(yōu)點是節(jié)省芯片資源,其運算速度取決于輸入的時鐘頻率。如若時鐘頻率為100MHz,則每個運算周期僅需80ns,因而具有一定的實用價值。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉