基于多特征SVMs分類器的手語(yǔ)識(shí)別*
SIFT特征
本文引用地址:http://butianyuan.cn/article/93422.htmDavid G.Lowe在2004年總結(jié)了現(xiàn)有的基于不變量技術(shù)的特征檢測(cè)方法,并正式提出了一種基于尺度空間的、對(duì)圖像縮放、旋轉(zhuǎn)甚至仿射變換保持不變性的圖像局部特征描述算子-SIFT算子[6,11],即尺度不變特征變換。
SIFT算法首先在尺度空間進(jìn)行特征檢測(cè),并確定關(guān)鍵點(diǎn)(Keypoints)的位置和關(guān)鍵點(diǎn)所處的尺度,然后使用關(guān)鍵點(diǎn)鄰域梯度的主方向作為該點(diǎn)的方向特征,以實(shí)現(xiàn)算子對(duì)尺度和方向的無(wú)關(guān)性。
Lowe在圖像二維平面空間和DoG(Difference of Gaussian)尺度空間中同時(shí)檢測(cè)局部極值以作為特征點(diǎn),以使特征具備良好的獨(dú)特性和穩(wěn)定性。DoG算子定義為兩個(gè)不同尺度的高斯核的差分,其具有計(jì)算簡(jiǎn)單的特點(diǎn),是歸一化LoG (Laplacian of Gaussian)算子的近似。DoG算子如下式所示:
對(duì)于圖像上的點(diǎn),計(jì)算其在每一尺度下DoG算子的響應(yīng)值,這些值連起來(lái)得到特征尺度軌跡曲線。特征尺度曲線的局部極值點(diǎn)即為該特征的尺度。尺度軌跡曲線上完全可能存在多個(gè)局部極值點(diǎn),這時(shí)可認(rèn)為該點(diǎn)有多個(gè)特征尺度。
一幅圖像SIFT特征向量的生成算法總共包括4步:
(1)尺度空間極值檢測(cè),初步確定關(guān)鍵點(diǎn)位置和所在尺度。
(2)通過(guò)擬和三維二次函數(shù)以精確確定關(guān)鍵點(diǎn)的位置和尺度,同時(shí)去除低對(duì)比度的關(guān)鍵點(diǎn)和不穩(wěn)定的邊緣響應(yīng)點(diǎn)(因?yàn)镈oG算子會(huì)產(chǎn)生較強(qiáng)的邊緣響應(yīng)),以增強(qiáng)匹配穩(wěn)定性、提高抗噪聲能力[6,11]。
(3)利用關(guān)鍵點(diǎn)鄰域像素的梯度方向分布特性為每個(gè)關(guān)鍵點(diǎn)指定方向參數(shù),使算子具備旋轉(zhuǎn)不變性。
式(14)為(x,y)處梯度的模值和方向公式。其中L所用的尺度為每個(gè)關(guān)鍵點(diǎn)各自所在的尺度。
評(píng)論