基于邊界點(diǎn)優(yōu)化和多步路徑規(guī)劃的機(jī)器人自主探索(2)
通過仿真地圖和真實(shí)地圖對(duì)所提出策略的性能進(jìn)行了實(shí)驗(yàn)驗(yàn)證,并與其他策略進(jìn)行了比較。所有用于比較的策略都是在運(yùn)行Ubuntu 14.04的Intel core i7 3.60GHz處理器和8GB RAM的計(jì)算機(jī)上使用ROS庫在c++中開發(fā)為ROS組件。
文章實(shí)驗(yàn)參數(shù)表如下:
對(duì)于仿真環(huán)境,我們使用Gazebo模擬器構(gòu)建一個(gè)封閉空間,如下圖4(a)所示。考慮到地圖尺寸變化的影響,使用了不同的地圖尺寸(2020m, 4040m, 6060m)。機(jī)器人的半徑為0.2m,激光傳感器的范圍設(shè)置為10m。圖4(c)為在2020m的模擬環(huán)境中建立的二維占用網(wǎng)格圖。
在真實(shí)環(huán)境中,作者利用擋板構(gòu)建了一個(gè)10m * 10m的空間,如下圖4(b)所示。實(shí)驗(yàn)中使用的移動(dòng)機(jī)器人平臺(tái)為EAIBOT Dashgo-D1。它配備了一個(gè)Hokuyo UST-10LX 2D激光傳感器(10米的檢測范圍和270°視野)。圖4(d)為在真實(shí)環(huán)境中構(gòu)建的二維占用網(wǎng)格圖。
4.2 邊界點(diǎn)優(yōu)化結(jié)果如下圖5(a)所示。由于RRT算法的隨機(jī)性,邊界點(diǎn)的位置都是隨機(jī)的。可以看出,有的邊界有很多邊界點(diǎn),有的邊界只有很少的邊界點(diǎn)。此外,在地圖的各個(gè)邊界上,邊界點(diǎn)的分布也不均勻。圖5(b)是用文中提出的算法生成的邊界點(diǎn)。優(yōu)化后邊界點(diǎn)數(shù)量大大減少,各邊界上的邊界點(diǎn)分布基本均勻。黃色點(diǎn)是根據(jù)定義的邊界點(diǎn)評(píng)價(jià)函數(shù)計(jì)算出的當(dāng)前情況下的最優(yōu)邊界點(diǎn)。
4.3 多步探索策略的結(jié)果如圖6(a)和圖6(b)所示,在傳統(tǒng)的全局路徑規(guī)劃策略下,機(jī)器人直接規(guī)劃從當(dāng)前位置到目標(biāo)邊界點(diǎn)的路徑,并搜索下一個(gè)目標(biāo)邊界點(diǎn),直到到達(dá)前一個(gè)目標(biāo)邊界點(diǎn)。
在多步路徑規(guī)劃策略中,每當(dāng)機(jī)器人的運(yùn)動(dòng)距離達(dá)到確定的局部探索路徑步長時(shí),都會(huì)重新計(jì)算并重新選擇最優(yōu)邊界點(diǎn)。從下面的圖6(c)可以看出,在機(jī)器人到達(dá)圖6(a)中的目標(biāo)邊界點(diǎn)之前,當(dāng)前的最優(yōu)邊界點(diǎn)已經(jīng)發(fā)生了變化。因此,機(jī)器人已經(jīng)規(guī)劃了一條新的路徑。結(jié)果是圖6(c)的路徑長度明顯短于圖6(a)和圖6(b)。
4.4 與其他策略的比較文中總共進(jìn)行了200組實(shí)驗(yàn),將提出的策略與其他四種策略進(jìn)行比較。策略1的思想是隨機(jī)選擇邊界點(diǎn)進(jìn)行探索,稱之為RANDOM。策略2的思想是選擇離機(jī)器人最近的邊界點(diǎn),用NEAREST來表示它。策略3采用了貪婪算法的思想,因此將其記為GREEDY。策略4是用UMARI來描述。本文中提出的策略稱為RFPO。為了比較不同地圖尺寸對(duì)探索策略的影響,作者使用了4張不同尺寸的地圖進(jìn)行實(shí)驗(yàn)(一張真實(shí)地圖和3張不同尺寸的模擬地圖)。每張地圖都要進(jìn)行50組探索作業(yè)。這50次探索分為5組,每組代表一種探索策略。在40*40 m的模擬地圖中,對(duì)于每種策略,從10次探索運(yùn)行中選擇一個(gè)實(shí)驗(yàn)結(jié)果來顯示機(jī)器人的探索軌跡。結(jié)果如圖7所示。
圖8為四種不同地圖中不同探索策略探索結(jié)束時(shí)的探索時(shí)間,圖9為四種不同地圖中不同探索策略探索結(jié)束時(shí)的探索距離。
分析:從圖中可以看出,地圖的尺寸越大,不同策略之間探索效率的差異就越明顯。在60*60m的模擬地圖上,文中提出的策略與其他四種策略相比,平均探索時(shí)間分別減少了26.71%、7.36%、5.56%、1.62%,平均探索距離分別減少了31.22%、15.56%、14.61%、8.43%。
- 對(duì)于RANDOM策略來說,由于每次的目標(biāo)邊界點(diǎn)都是隨機(jī)選擇的,機(jī)器人會(huì)走很多重復(fù)的路線,所以探測時(shí)間和探測距離都會(huì)增加。
- 而NEAREST策略和GREEDY策略會(huì)導(dǎo)致搜索變成局部最優(yōu)問題,影響搜索的效率。
- UMARI的策略直接規(guī)劃了機(jī)器人從當(dāng)前位置到探測目標(biāo)點(diǎn)的路徑,這可能會(huì)導(dǎo)致圖6中的問題。
實(shí)驗(yàn)結(jié)果表明,無論是與探測時(shí)間相比,還是與探測距離相比,文中提出的探測策略的效果都優(yōu)于其他策略,證明了所提出策略的有效性。
5 總結(jié)本文提出了一種基于邊界點(diǎn)優(yōu)化和多步路徑規(guī)劃的機(jī)器人自主探索策略。該策略可以驅(qū)動(dòng)機(jī)器人探索未知環(huán)境,并在無需人工干預(yù)的情況下高效地構(gòu)建相應(yīng)的二維占用柵格地圖。在這個(gè)探索策略中,作者使用RRT算法來生成邊界點(diǎn),并提出RFPO算法來優(yōu)化這些邊界點(diǎn)。然后定義了邊界點(diǎn)評(píng)價(jià)函數(shù),選取當(dāng)前最優(yōu)邊界點(diǎn)進(jìn)行探索。在路徑規(guī)劃部分,設(shè)置了一個(gè)局部探索路徑步長,當(dāng)機(jī)器人的運(yùn)動(dòng)距離達(dá)到局部探索路徑步長時(shí),重新選擇目標(biāo)邊界點(diǎn)進(jìn)行探索,以減少機(jī)器人走一些重復(fù)路徑的可能性。最后通過實(shí)驗(yàn),驗(yàn)證了所提策略的有效性。
未來改進(jìn):目前只使用里程計(jì)數(shù)據(jù)結(jié)合激光傳感器數(shù)據(jù)來構(gòu)建二維占用網(wǎng)格地圖,地圖中包含的信息相對(duì)較少。
- 可以將視覺傳感器數(shù)據(jù)融合到自主探索中,視覺傳感器數(shù)據(jù)的優(yōu)點(diǎn)是可以獲得更多的環(huán)境信息,這些數(shù)據(jù)可以被融合在一起,為以后的導(dǎo)航任務(wù)和其他相關(guān)工作構(gòu)建具有更豐富信息的地圖。
- 此外,可以嘗試協(xié)調(diào)多個(gè)機(jī)器人進(jìn)行高效探索。
*博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。