電流源設(shè)計(jì)小Tips(一):如何選擇合適的運(yùn)放(2)
gm是個(gè)問題,雖然可以查到直流gm,大致為7@Id=8A/VDS=50V,但實(shí)際用在Id=100mA/VDS《20V,根據(jù)datasheet中的輸出特性曲線可以看到在飽和區(qū)gm隨Id減小而減小,與VDS關(guān)系不大,在可變電阻區(qū),gm隨Id和VDS減小而明顯減小。gm在Id很小時(shí)大致在1-3左右。暫取2。
圖20
gm也有轉(zhuǎn)折頻率,最終產(chǎn)生fT,但這個(gè)參數(shù)很難得到,因?yàn)榇蠖鄶?shù)功率MOSFET都是用在開關(guān)狀態(tài),而且gmDC隨偏置變化很大,因此datasheet里通常不給出,但由導(dǎo)通時(shí)間,Ciss,Coss和Crss可大致推出gm的fT很高,除以gmDC即為轉(zhuǎn)折頻率,很高,大致在10MHz左右。已遠(yuǎn)遠(yuǎn)超出OP07的可操作范圍,因此忽略,認(rèn)為gm是不隨頻率變化的水平直線。
也可看出為什么之前不用OP37的原因,因?yàn)間m的轉(zhuǎn)折頻率恰好在OP37的操作頻率范圍內(nèi),從而造成頻率補(bǔ)償復(fù)雜度增加。
分析Aopen之一:運(yùn)放的主極點(diǎn)
運(yùn)放是多零極點(diǎn)系統(tǒng),但一般都具有2個(gè)主極點(diǎn),低頻主極點(diǎn),靠近DC,高頻主極點(diǎn),靠近GBW。圖為OP07的開環(huán)增益頻響曲線。
圖21
2個(gè)主極點(diǎn)中,高頻主極點(diǎn)通常不受重視,因?yàn)榇蠖鄶?shù)運(yùn)放的高頻主極點(diǎn)都在0dB線以下,即單位增益穩(wěn)定。反饋環(huán)路中只有1只運(yùn)放時(shí)很少遇到增益小于1的情況。因此很多運(yùn)放datasheet中高頻主極點(diǎn)都不標(biāo)出。
考慮運(yùn)放與10倍理想增益級(jí)級(jí)聯(lián)(有時(shí)是必須的),這個(gè)高頻主極點(diǎn)就會(huì)浮出水面,如果閉環(huán)增益為1,便會(huì)產(chǎn)生振蕩。
圖22
圖23
分析Aopen之二:MOSFET和Rsample
如前所述,MOSFET分為輸入和輸出兩部分,通過合理簡(jiǎn)化,輸入的Cgs接地。
應(yīng)該感謝輸入輸出功率隔離的設(shè)計(jì)方法,不知是誰先造出了電子管,否則這部分分析會(huì)相當(dāng)復(fù)雜。
1. 輸入部分
輸入部分由Ro=200 Ohm和Cgs=1000pF構(gòu)成低通濾波器,并產(chǎn)生一個(gè)極點(diǎn)po。低頻增益為0dB,產(chǎn)生轉(zhuǎn)折頻率的極點(diǎn)po位于約800kHz。正好落在OP07 0dB以上的頻帶范圍內(nèi),因此推測(cè)與振蕩有關(guān)。
圖24
2. 輸出部分
MOSFET的電流Id=gmVgs流經(jīng)Rsample產(chǎn)生電壓gmVgsRsample,因此增益為gmRsample。由于gm的轉(zhuǎn)折頻率很高,Rsample在低頻下為理想電阻,因此gmRsample的頻率響應(yīng)為平行于0dB線的直線。
電流源輸出電流很小時(shí),gm接近于0,因此gmRsample位于0dB線以下很低的位置。輸出電流增大造成gm增大,gmRsample不斷上移,直至最大電流時(shí),gm=2s,Rsample=3 Ohm,gmRsample=6,移至0dB線以上。
圖25
兩部分級(jí)聯(lián)后,增益相乘,波特圖上增益相加,如下圖:
圖26
此時(shí)如果gmRsample》1,極點(diǎn)po在0dB線之上,反之則在0dB線之下。
一旦po高于0dB線,而1/F=1(0dB)且運(yùn)放自身Aopen在此頻率附近有-20dB/DEC的斜率,則po之后斜率將達(dá)到-40dB/DEC,可能產(chǎn)生振蕩。
因此推論振蕩的產(chǎn)生應(yīng)與Ro、Cgs、gm和Rsample均相關(guān)。
分析Aopen之三:為何振蕩
將運(yùn)放、MOSFET和Rsample構(gòu)成的傳遞函數(shù)級(jí)聯(lián),得到下圖的完整開環(huán)增益Aopen:
圖27
Aopen具有3個(gè)主極點(diǎn),分別為:
1. 運(yùn)放低頻主極點(diǎn)pL
2. MOSFET輸入電容造成的極點(diǎn)po
3. 運(yùn)放高頻主極點(diǎn)pH
gmRsample《1時(shí),po在0dB線之下,系統(tǒng)穩(wěn)定。
gmRsample》1時(shí),po在0dB線之上,系統(tǒng)振蕩。
gmRsample=1時(shí),po=0dB,系統(tǒng)處于臨界狀態(tài)。
此問題的原因說來簡(jiǎn)單:
gm與電流Id息息相關(guān),gm隨Id的增大而增大,因此gmRsample
可能由《1變化至》1,使極點(diǎn)po位于0dB線之上,1/F=0dB線與
Aopen的交點(diǎn)處斜率差為40dB/DEC,因此系統(tǒng)振蕩。
當(dāng)然,可通過降低Rsample避免振蕩,然而這不是治本的方法,而且會(huì)引起成本、噪聲等一系列問題。
處理振蕩時(shí)的一個(gè)基本原則,盡量首先剪裁Aopen,而后才是1/F。改變1/F可能造成系統(tǒng)瞬態(tài)性能的變化。
頻率補(bǔ)償是雙刃劍,可能造成系統(tǒng)性能下降,過分的單一補(bǔ)償會(huì)造成大量問題。因此應(yīng)盡量使用多種補(bǔ)償方法,而且每種補(bǔ)償適可而止。
本次將采用三種補(bǔ)償方法,分別解決三種問題:
1. 加速補(bǔ)償
2. 噪聲增益補(bǔ)償
3. 高頻積分補(bǔ)償
由于篇幅的原因,第一部分就先說到這里,接下來我會(huì)談到加速補(bǔ)償,校正Aopen的問題,敬請(qǐng)留意。
DIY機(jī)械鍵盤相關(guān)社區(qū):機(jī)械鍵盤DIY
電流傳感器相關(guān)文章:電流傳感器原理
評(píng)論