基因芯片技術(shù)未來(lái)發(fā)展簡(jiǎn)介
1 基因芯片概述
隨著人類基因組計(jì)劃( Human Genome Project)即全部核苷酸測(cè)序的即將完成,人類基因組研究的重心逐漸進(jìn)入后基因組時(shí)代( Postgenome Era)向基因的功能及基因的多樣性傾斜。通過(guò)對(duì)個(gè)體在不同生長(zhǎng)發(fā)育階段或不同生理狀態(tài)下大量基因表達(dá)的平行分析,研究相應(yīng)基因在生物體內(nèi)的功能,闡明不同層次多基因協(xié)同作用的機(jī)理,進(jìn)而在人類重大疾病如癌癥、心血管疾病的發(fā)病機(jī)理、診斷治療、藥物開發(fā)等方面的研究發(fā)揮巨大的作用。它將大大推動(dòng)人類結(jié)構(gòu)基因組及功能基因組的各項(xiàng)基因組研究計(jì)劃。
基因芯片的工作原理與經(jīng)典的核酸分子雜交方法(southern 、northern)是一致的,都是應(yīng)用已知核酸序列作為探針與互補(bǔ)的靶核苷酸序列雜交,通過(guò)隨后的信號(hào)檢測(cè)進(jìn)行定性與定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子識(shí)別探針,能夠在同一時(shí)間內(nèi)平行分析大量的基因,進(jìn)行大信息量的篩選與檢測(cè)分析?;蛐酒饕夹g(shù)流程包括:芯片的設(shè)計(jì)與制備;靶基因的標(biāo)記;芯片雜交與雜交信號(hào)檢測(cè)。
基因芯片的設(shè)計(jì)實(shí)際上是指芯片上核酸探針序列的選擇以及排布,設(shè)計(jì)方法取決于其應(yīng)用目的,目前的應(yīng)用范圍主要包括基因表達(dá)和轉(zhuǎn)錄圖譜分析及靶序列中單堿基多態(tài)位點(diǎn)(single nucleotide polymorphism,SNP)或突變點(diǎn)的檢測(cè),表達(dá)型芯片的目的是在雜交實(shí)驗(yàn)中對(duì)多個(gè)不同狀態(tài)樣品(不同組織或不同發(fā)育階段、不同藥物刺激)中數(shù)千基因的表達(dá)差異進(jìn)行定量檢測(cè),探針序列一般來(lái)自于已知基因的cDNA 或EST庫(kù),設(shè)計(jì)時(shí)序列的特異性應(yīng)放在首要位置,以保證與待測(cè)目的基因的特異結(jié)合,對(duì)于同一目的基因可設(shè)計(jì)多個(gè)序列不相重復(fù)的探針,使最終的數(shù)據(jù)更為可靠。基因單堿基多態(tài)檢測(cè)的芯片一般采用等長(zhǎng)移位設(shè)計(jì)法,即按靶序列從頭到尾依次取一定長(zhǎng)度的互補(bǔ)的核苷酸序列形成一探針組合,這組探針是與靶序列完全匹配的野生型探針,然后對(duì)于每一野生型探針,將其中間位置的某一堿基分別用其它三種堿基替換,形成三種不同的單堿基變化的核苷酸探針,這種設(shè)計(jì)可以對(duì)某一段核酸序列所有可能的SNPs位點(diǎn)進(jìn)行掃描。
芯片制備方法主要包括兩種類型:(1)點(diǎn)樣法:首先是探針庫(kù)的制備, 根據(jù)基因芯片的分析目標(biāo)從相關(guān)的基因數(shù)據(jù)庫(kù)中選取特異的序列進(jìn)行PCR擴(kuò)增或直接人工合成寡核苷酸序列,然后通過(guò)計(jì)算機(jī)控制的三坐標(biāo)工作平臺(tái)用特殊的針頭和微噴頭分別把不同的探針溶液逐點(diǎn)分配在玻璃、尼龍以及其它固相基片表面的不同位點(diǎn)上,通過(guò)物理和化學(xué)的方法使之固定,該方法各技術(shù)環(huán)節(jié)均較成熟,且靈活性大,適合于研究單位根據(jù)需要自行制備點(diǎn)陣規(guī)模適中的基因芯片。(2)原位合成法:該法是在玻璃等硬質(zhì)表面上直接合成寡核苷酸探針陣列,目前應(yīng)用的主要有光去保護(hù)并行合成法,壓電打印合成法等,其關(guān)鍵是高空間分辨率的模板定位技術(shù)和高合成產(chǎn)率的DNA化學(xué)合成技術(shù),適合制作大規(guī)模DNA探針芯片,實(shí)現(xiàn)高密度芯片的標(biāo)準(zhǔn)化和規(guī)模化生產(chǎn)。
待分析樣品的制備是基因芯片實(shí)驗(yàn)流程的一個(gè)重要環(huán)節(jié), 靶基因在與芯片探針結(jié)合雜交之前必需進(jìn)行分離、擴(kuò)增及標(biāo)記。標(biāo)記方法根據(jù)樣品來(lái)源、芯片類型和研究目的的不同而有所差異。通常是在待測(cè)樣品的PCR擴(kuò)增、逆轉(zhuǎn)錄或體外轉(zhuǎn)錄過(guò)程中實(shí)現(xiàn)對(duì)靶基因的標(biāo)記。對(duì)于檢測(cè)細(xì)胞內(nèi)mRNA表達(dá)水平的芯片,一般需要從細(xì)胞和組織中提取RNA,進(jìn)行逆轉(zhuǎn)錄,并加入偶聯(lián)有標(biāo)記物的dNTP,從而完成對(duì)靶基因的標(biāo)記過(guò)程,對(duì)于陣列密度較小的芯片可以用同位素,所需儀器均為實(shí)驗(yàn)室常規(guī)使用設(shè)備,易于開展相關(guān)工作,但是在信號(hào)檢測(cè)時(shí),一些雜交信號(hào)強(qiáng)的點(diǎn)陣容易產(chǎn)生光暈,干擾周圍信號(hào)的分析。高密度芯片的分析一般采用熒光素標(biāo)記靶基因,通過(guò)適當(dāng)內(nèi)參的設(shè)置及對(duì)熒光信號(hào)強(qiáng)度的標(biāo)化可對(duì)細(xì)胞內(nèi)mRNA的表達(dá)進(jìn)行定量檢測(cè)。近年來(lái)運(yùn)用的多色熒光標(biāo)記技術(shù)可更直觀地比較不同來(lái)源樣品的基因表達(dá)差異,即把不同來(lái)源的靶基因用不同激發(fā)波長(zhǎng)的熒光素標(biāo)記,并使它們同時(shí)與基因芯片雜交,通過(guò)比較芯片上不同波長(zhǎng)熒光的分布圖獲得不同樣品間差異表達(dá)基因的圖譜,常用的雙色熒光試劑有Cy3- dNTP和Cy5- dNTP。對(duì)多態(tài)性和突變檢測(cè)型基因芯片采用多色熒光技術(shù)可以大大提高芯片的準(zhǔn)確性和檢測(cè)范圍,例如用不同的熒光素分別標(biāo)記靶序列及單堿基失配的參考序列,使它們同時(shí)與芯片雜交,通過(guò)不同熒光強(qiáng)弱的比較得出靶序列中堿基失配的信息。
基因芯片與靶基因的雜交過(guò)程與一般的分子雜交過(guò)程基本相同,雜交反應(yīng)的條件要根據(jù)探針的長(zhǎng)度、GC堿基含量及片的類型來(lái)優(yōu)化,如用于基因表達(dá)檢測(cè),雜交的嚴(yán)格性較低,而用于突變檢測(cè)的芯片的雜交溫度高,雜交時(shí)間短,條件相對(duì)嚴(yán)格。如果是用同位素標(biāo)記靶基因,其后的信號(hào)檢測(cè)即是放射自顯影,若用熒光標(biāo)記,則需要一套熒光掃描及分析系統(tǒng),對(duì)相應(yīng)探針陣列上的熒光強(qiáng)度進(jìn)行分析比較,從而得到待測(cè)樣品的相應(yīng)信息。由于基因芯片獲取的信息量大,對(duì)于基因芯片雜交數(shù)據(jù)的分析、處理、查詢、比較等需要一個(gè)標(biāo)準(zhǔn)的數(shù)據(jù)格式,目前,一個(gè)大型的基因芯片的數(shù)據(jù)庫(kù)正在構(gòu)建中,將各實(shí)驗(yàn)室獲得的基因芯片的結(jié)果集中起來(lái),以利于數(shù)據(jù)的交流及結(jié)果的評(píng)估與分析。
2 基因芯片的應(yīng)用
基因表達(dá)圖譜的繪制是目前基因芯片應(yīng)用最廣泛的領(lǐng)域,也是人類基因組工程的重要組成部分,它提供了從整體上分析細(xì)胞表達(dá)狀況的信息,而且為了解與某些特殊生命現(xiàn)象相關(guān)的基因表達(dá)提供了有力的工具,對(duì)于基因調(diào)控以及基因相互作用機(jī)理的探討有重要作用。人類基因組編碼大約100000個(gè)不同的基因,因此,具有監(jiān)測(cè)大量mRNA的實(shí)驗(yàn)工具很重要?;蛐酒夹g(shù)可清楚地直接快速地檢測(cè)出以1∶300000水平出現(xiàn)的mRNA,且易于同時(shí)監(jiān)測(cè)成千上萬(wàn)的基因。目前,已能夠在1.6cm2面積上合成和閱讀含400000個(gè)探針的陣列,可監(jiān)測(cè)10000個(gè)基因的表達(dá)狀況。斯坦福大學(xué)的Brown用制備的酵母cDNA芯片,獲得酵母在不同細(xì)胞周期狀態(tài)以及在熱休克冷休克處理后其2473個(gè)基因的表達(dá)圖譜,較直觀地反應(yīng)了不同條件和狀態(tài)下基因轉(zhuǎn)錄調(diào)控水平,從而為尋找基因調(diào)控的機(jī)理提供了一條有效的途徑。
定量監(jiān)測(cè)大量基因表達(dá)水平在闡述基因功能、探索疾病原因及機(jī)理、發(fā)現(xiàn)可能的診斷及治療的靶基因等方面具有重要價(jià)值的。Derisi等選用來(lái)自惡性腫瘤細(xì)胞系UACC903中的1161個(gè)cDNA克隆制成芯片,通過(guò)比較正常和腫瘤細(xì)胞的表達(dá)差異,發(fā)現(xiàn)在惡性腫瘤細(xì)胞中P21基因處于失活或關(guān)閉狀態(tài),但在逆轉(zhuǎn)的細(xì)胞系中呈高表達(dá)。Golub等應(yīng)用cDNA 芯片檢測(cè)基因表達(dá)的差異進(jìn)行癌癥的分類,成功地區(qū)分出急性髓細(xì)胞性白血?。ˋML)和急性淋巴細(xì)胞性白血?。ˋLL),預(yù)期這種方法還能診斷出新的白血病種類。在炎癥性疾病類風(fēng)濕性關(guān)節(jié)炎(RA)和炎癥性腸病(IBD)的基因表達(dá)研究中,可檢測(cè)出炎癥疾病誘導(dǎo)的基因如TNF-α、IL或粒細(xì)胞集落刺激因子,同時(shí)發(fā)現(xiàn)一些以前未發(fā)現(xiàn)的基因如HME基因和黑色素瘤生長(zhǎng)刺激因子。目前,大量涌現(xiàn)的人類ESTs給cDNA微陣列提供了豐富的序列資源,數(shù)據(jù)庫(kù)中ESTs代表了人類基因,因此ESTs微陣列可在缺乏其它序列信息的條件下用于基因發(fā)現(xiàn)和基因表達(dá)檢測(cè),從而加快人類基因組功能分析的進(jìn)程。
基因芯片的另一重要應(yīng)用是基因多態(tài)位點(diǎn)及基因突變的檢測(cè),現(xiàn)有大量實(shí)例說(shuō)明,基因組多樣性的研究對(duì)闡明不同人群和個(gè)體在疾病的易感性和抵抗性方面表現(xiàn)出的差異具有重要意義,一旦對(duì)基因組的編碼序列進(jìn)行系統(tǒng)篩查,就有可能找出與疾病易感性有關(guān)的大量基因變異?;蛐酒夹g(shù)可大規(guī)模地檢測(cè)和分析DNA的變異及多態(tài)性。Wang等應(yīng)用高密度基因芯片對(duì)2.3Mb人類基因的SNP 進(jìn)行篩查,確定了3241個(gè)SNPs位點(diǎn),顯示出大規(guī)模鑒定人類基因型的可能。Lipshutz等人采用含18,495個(gè)寡核苷酸探針的微陣列,對(duì)HIV-1基因組反轉(zhuǎn)錄酶基因(rt)及蛋白酶基因(pro)的高度多態(tài)性進(jìn)行了篩選,這些變異將導(dǎo)致病毒對(duì)多種抗病毒藥物包括AZT、ddI、ddC等表現(xiàn)出抗性,因此rt與pro的變異與多態(tài)性的檢測(cè)具有重要的臨床意義。隨著大量疾病相關(guān)基因的發(fā)現(xiàn),變異與多態(tài)性分析將在疾病的診斷與治療方面體現(xiàn)出越來(lái)越重要的價(jià)值。Affymetrix公司已將P53 基因的全長(zhǎng)序列和已知突變的序列制成探針集成在芯片上,可對(duì)與P53 基因突變相關(guān)的癌癥進(jìn)行早期診斷。Hacia等采用含96600個(gè)20聚寡核苷酸高密度陣列對(duì)遺傳性乳腺和卵巢癌BRCA1基因3.45kb的第11個(gè)外顯子進(jìn)行雜合變異篩選,結(jié)果準(zhǔn)確診斷出15個(gè)已知變異的患者樣品中的14個(gè),而在20個(gè)對(duì)照樣品中未發(fā)現(xiàn)1例假陽(yáng)性,表明DNA芯片技術(shù)在某些疾病相關(guān)基因可能的雜合變異的檢測(cè)方面所具有的靈敏度與特異性是令人滿意的。
芯片技術(shù)中雜交測(cè)序技術(shù)(sequencing by hybridization,SBH)是一種新的高效快速測(cè)序方法,也是基因芯片的另一重要應(yīng)用,其原理與芯片檢測(cè)多態(tài)位點(diǎn)相類似,即通過(guò)與一組已知序列的核酸探針雜交進(jìn)行序列測(cè)定,用熒光標(biāo)記的待測(cè)序列與基因芯片上對(duì)應(yīng)位置的核酸探針產(chǎn)生互補(bǔ)配對(duì)時(shí),通過(guò)確定熒光強(qiáng)度最強(qiáng)的探針位置,獲得一組序列互補(bǔ)的探針序列,據(jù)此可重組出靶核酸的序列。用含65536個(gè)8聚寡核苷酸的微陣列,采用SBH技術(shù),可測(cè)定200bp長(zhǎng)DNA序列采用67108864個(gè)13聚寡核苷酸的微陣列,可對(duì)數(shù)千個(gè)堿基長(zhǎng)的DNA測(cè)序。
3 結(jié)束語(yǔ)
基因芯片技術(shù)的出現(xiàn)不過(guò)短短幾年時(shí)間,其發(fā)展勢(shì)頭十分迅猛,在生命科學(xué)的各個(gè)領(lǐng)域得到廣泛地應(yīng)用,但其存在的缺陷也是相當(dāng)明顯的。首先是成本的問題,由于芯片制作的工藝復(fù)雜,信號(hào)檢測(cè)也需專門的儀器設(shè)備,一般實(shí)驗(yàn)室難以承擔(dān)其高昂的費(fèi)用,其次在芯片實(shí)驗(yàn)技術(shù)上還有多個(gè)環(huán)節(jié)尚待提高,如在探針合成方面,如何進(jìn)一步提高合成效率及芯片的集成程度是研究的焦點(diǎn)。而樣品制備的簡(jiǎn)單化與標(biāo)準(zhǔn)化則芯片應(yīng)用進(jìn)一步普及的前提。雖然芯片技術(shù)還存在這樣或那樣的問題,但其在基因表達(dá)譜分析、基因診斷、藥物篩選及序列分析等諸多領(lǐng)域已呈現(xiàn)出廣闊的應(yīng)用前景,隨著研究的不斷深入和技術(shù)的更加完善基因芯片一定會(huì)在生命科學(xué)研究領(lǐng)域發(fā)揮越來(lái)越重要的作用。
評(píng)論