新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 帶有漏電感的反激式轉(zhuǎn)換器小信號模型

帶有漏電感的反激式轉(zhuǎn)換器小信號模型

作者: 時間:2018-08-09 來源:網(wǎng)絡(luò) 收藏

我們將研究CCM反激式于電壓模式下被漏電感影響的小信號響應(yīng)。我們將從大信號模型逐步邁向逐漸簡化的小信號電路原理圖,以建立最簡單的線性版本。從這最終的電路,我們將提取-輸出傳遞函數(shù),并顯示漏電感如何影響傳遞函數(shù)分母的品質(zhì)因數(shù)。

本文引用地址:http://butianyuan.cn/article/201808/386116.htm

從大信號到小信號

當您想獲得一個復(fù)雜電路的傳遞函數(shù)時,您的目標是減少復(fù)雜度,以便通過最簡單的電路原理圖進行分析。但是,當您在減少電路的過程中–通過因式分解、簡化表達式、忽略變量等–您必須測試您的新電路,并與最初的電路響應(yīng)進行比較。在最初的響應(yīng)和您隨后的簡化版本的響應(yīng)之間的任何偏差都表明您弄錯了,或者您作的假設(shè)過于簡單化 :丟棄這電路并回到前一步重做。遵照這步驟,您肯定進展很慢,但卻很仔細,您可立即發(fā)現(xiàn)和改正錯誤。沒有什么比在結(jié)束時發(fā)現(xiàn)錯誤而同時您意識到在一個中間步驟就出了問題更令人沮喪的了!

圖1:這開環(huán)大信號電路原理圖是我們的起始電路,其動態(tài)響應(yīng)將用作后面步驟的參考

首先我們用第二部分介紹的小信號版本代替大信號PWM開關(guān)模型。然后,我們可運行一個交流仿真,并驗證操作點和響應(yīng)是相同的。非線性模型在圖1中,而小信號版本出現(xiàn)在圖2中。占空比已分為兩個源,一個用于靜態(tài)占空比,一個用于交流調(diào)制。

偏置點與圖1中的相同說明第一步是正確的。我們來看看這兩個比較電路的頻率響應(yīng)如何。我們已采集了如圖3 的波特圖:幅值和相位曲線重疊,驗證了我們的第一步。

圖2中的電路圖是正確的但相當復(fù)雜。如上所述,小信號分析意味著盡可能簡化電路,并將各種不同元件重新整理成一個更有意義的架構(gòu)。

圖2:PWM開關(guān)由小信號版本替代,并對參考頻率響應(yīng)進行了電路動態(tài)響應(yīng)檢查

圖3:兩個電路的波特圖完全重疊,驗證了第一步。

我們插入的PWM開關(guān)模型確實是線性版本,我們無需研究它。然而,計算峰谷電流、鉗位電壓等的所有源仍然是大信號運算,我們需要將其線性化。幸運的是,這有些源在我們的交流分析中是不需要的的如Ip和d2。

源線性化

您有兩個選擇,如果您想線性化這些源。您可通過小的勵磁改變每一變量–您看到的某些變量中的小帽子^ - 并整理交流和直流項以形成兩個獨立的等式:一個靜態(tài)和一個動態(tài)的表達式。靜態(tài)的表達式描述了操作點–此處我們并不需要它–而動態(tài)的表達式是我們想要的。采用這技術(shù)的問題是您獲得的項和交叉產(chǎn)品的數(shù)量,特別是變量超過兩個。整理這些項以形成交流和直流等式,有時可能是繁瑣的和錯誤的源。我們試著采用谷底電流的定義:

(1)

這里有3個變量,Ic, d 和d1。如果我們少量改變每一變量,得出

(2)

展開為

(3)

現(xiàn)在合并交流和直流項,我們有兩個定義:

(4)

如果我們定義兩個系數(shù)kivd 和kivd1為

(5)

(6)

(4)中的動態(tài)等式可重新整理為

(7)

靜態(tài)系數(shù)kivd 和kivd1將被作為參數(shù)在捕獲的電路圖中傳遞,并在仿真開始前預(yù)估。

另一現(xiàn)有的選擇是不用整理而以更快的方式獲得小信號系數(shù)如kivd 和kivd1。分步操作是簡單的,但表達式很復(fù)雜,并有多個變量,它很快成為困難的工作,您無法通過解算器如Mathcad®自動求解。一組不相關(guān)(獨立) 的變量給出更快的方法,包括使用偏微分法,如下所示:

(8)

或使用小信號記法

(9)

在這里,交流項系數(shù)只有從這偏微分法獲得。將該方法應(yīng)用到圖2中的d1發(fā)生器得出

(10)

從中導(dǎo)出

(11)

考慮kd1vo 和kd1iv系數(shù),我們可將(11)改寫為

(12)

其中

(13)

(14)

現(xiàn)在我們有線性的d1 和Iv源,我們可更新和簡化電路圖圖2。結(jié)果如圖4:在參數(shù)文本窗口中計算表達式(5)、(6)和(13)、(14)?,F(xiàn)在這圖中的所有源都是小信號類型。快速的交流分析顯示,頻率響應(yīng)的幅值和相位完全與圖3匹配。

簡化電路原理圖

我們可從這電路原理圖開始分析線性。不過可能需要進一步的簡化和整理。例如,在-輸出傳遞函數(shù)中,輸入電壓是Vin恒定的,

因此,連接到輸入電壓的節(jié)點“a”正好接地。通過接地節(jié)點“a”,您可重畫電路并顯示為如圖5所示的更簡單的版本。測試這電路的頻率響應(yīng)并與圖3比較,以檢測在新整理出的模型中的任何錯誤。

電流源B7與電壓源B1串聯(lián)。為進一步簡化,B7負端可參考接地,而B1的輸出連接到節(jié)點20以獨立的源轉(zhuǎn)換。圖6給出了新的電路圖。節(jié)點20用于源B10(通過定義更新),兩個電流源B7/B2可并聯(lián)以形成單個源。這是如圖7所示的用于分析的最終電路。請注意源Iv表達式已包含在d1源中?;趫D8中的大信號參考模型繪制此電路的頻率響應(yīng)。因為相位和幅值相同,我們現(xiàn)在可著手這最終的表達式。

圖4:更新的電路現(xiàn)在只包括線性源。

圖5:考慮恒定的輸入電壓,節(jié)電“a”可接地并進一步簡化,得出小信號電路。

圖6:電流源B7現(xiàn)在接地,而B1在節(jié)點20提供電壓。

圖7:只要電流源并聯(lián)到B7和節(jié)點20整合到B10,我們可得出最終的小信號電路原理圖。Iv已整合到d1。

圖8:大信號模型的頻率響應(yīng)和我們簡化電路圖7的頻率響應(yīng)相同

生成等式

我們從電感電流等于節(jié)點“c”的電壓除以電感阻抗開始。節(jié)點“c”的電壓由節(jié)點“p”的電壓與電壓源B10串聯(lián)定義。節(jié)點“p”的電壓只是減去通過變壓器匝數(shù)比N(忽略二極管正向壓降)反射到初級端的輸出電壓。我們有

(15)

源d1可改寫,因為Lp的電流現(xiàn)已被定義(它是圖7 d1源的I(Vc))

(16)

解得d1(s)為

(17)

輸出電流是以變壓器匝數(shù)比N縮放的初級電流。它是由源B7減去流經(jīng)電感的電流及由(15)定義的電流:

(18)

在此表達式中,Ic是在本系列文章第二部分已確定的直流值

(19)

這電流以由如圖9所示的rC,Cout和負載電阻RL形成的阻抗循環(huán)。

電容、ESR和負載電阻形成的復(fù)雜的阻抗RL。%20src=http://image.ednchina.com/201606/2016June12_CONV_ANALOG_TA_030.jpg />

圖9:最終描述包括變壓器驅(qū)動由輸出電容、ESR和負載電阻形成的復(fù)雜的阻抗RL。


上一頁 1 2 下一頁

關(guān)鍵詞: 轉(zhuǎn)換器 控制

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉