優(yōu)化信號(hào)鏈的電源系統(tǒng)—第3部分:RF收發(fā)器
簡(jiǎn)介
本信號(hào)鏈電源優(yōu)化系列文章的第1部分討論了如何量化電源噪聲以確定其影響信號(hào)鏈器件的哪些參數(shù)。通過確定信號(hào)處理器件可以接受而不影響其所產(chǎn)生信號(hào)的完整性的實(shí)際噪聲限值,可以創(chuàng)建優(yōu)化的配電網(wǎng)絡(luò)(PDN)。在第2部分中,該方法被應(yīng)用于高速模數(shù)和數(shù)模轉(zhuǎn)換器,證明將噪聲降低到必要水平并不一定要提高成本、增加尺寸、降低效率。這些設(shè)計(jì)參數(shù)實(shí)際上可以在一個(gè)優(yōu)化的電源解決方案中滿足。
本文重點(diǎn)關(guān)注信號(hào)鏈的另一部分——RF收發(fā)器。本文將探討器件對(duì)來自各電源軌的噪聲的敏感度,確定哪些器件需要額外的噪聲濾波。本文提供了一種優(yōu)化的電源解決方案,并通過將其SFDR和相位噪聲性能與當(dāng)前PDN(當(dāng)連接到RF收發(fā)器時(shí))進(jìn)行比較來進(jìn)一步驗(yàn)證。
優(yōu)化ADRV9009 6 GHz雙通道RF收發(fā)器的電源系統(tǒng)
ADRV9009是一款高集成度射頻(RF)、捷變收發(fā)器,提供雙通道發(fā)射器和接收器、集成式頻率合成器以及數(shù)字信號(hào)處理功能。這款I(lǐng)C具備多樣化的高性能和低功耗組合,可滿足3G、4G和5G宏蜂窩時(shí)分雙工(TDD)基站應(yīng)用要求。
圖1 ADRV9009雙通道收發(fā)器的標(biāo)準(zhǔn)評(píng)估板配電網(wǎng)絡(luò)。此設(shè)置使用一個(gè)ADP5054四通道穩(wěn)壓器和四個(gè)LDO后置穩(wěn)壓器來滿足噪聲規(guī)格,并最大限度地提高收發(fā)器的性能。目標(biāo)是改善該解決方案
圖1顯示了ADRV9009雙通道收發(fā)器的標(biāo)準(zhǔn)PDN。PDN由一個(gè)ADP5054四通道開關(guān)穩(wěn)壓器和四個(gè)線性穩(wěn)壓器組成。這里的目標(biāo)是了解配電網(wǎng)絡(luò)的哪些性能參數(shù)可以改善,同時(shí)產(chǎn)生的噪聲不會(huì)降低收發(fā)器的性能。
如本系列文章所述1,2,為了優(yōu)化PDN,量化ADRV9009對(duì)電源噪聲的敏感度是必要的。ADRV9009 6 GHz雙通道RF收發(fā)器需要如下五個(gè)不同的電源軌:
※ 1.3 V模擬(VDDA1P3_AN)
※ 1.3 V數(shù)字(VDDD1P3_DIG)
※ 1.8 V發(fā)射器和BB (VDDA_1P8)
※ 2.5 V接口(VDD_INTERFACE)
※ 3.3 V輔助(VDDA_3P3)
分析
圖2顯示了模擬電源軌(VDDA1P3_AN、VDDA_1P8和VDDA_3P3)的接收器1端口PSMR結(jié)果。對(duì)于數(shù)字電源軌(VDDD1P3_DIG和VDD_INTERFACE),我們利用信號(hào)發(fā)生器能夠產(chǎn)生的最大注入紋波在輸出頻譜中未產(chǎn)生雜散,因此我們無需擔(dān)心最小化這些電源軌上的紋波。調(diào)制雜散幅度用dBFS表示,其中最大輸出功率(0 dBF)相當(dāng)于50Ω系統(tǒng)中的7 dBm或1415.89 mV p-p。
圖2 ADRV9009收發(fā)器的模擬電源軌在接收器1處的PSMR性能
對(duì)于VDDA1P3_AN電源軌,測(cè)量是在收發(fā)器板的兩個(gè)不同分支上進(jìn)行。請(qǐng)注意,在圖2中,PSMR在<200kHz紋波頻率時(shí)低于0 dB,表示這些頻率下的紋波產(chǎn)生更高的相同幅度調(diào)制雜散。這意味著在200 kHz以下,接收器1對(duì)VDDA1P3_AN電源軌產(chǎn)生的最小紋波也非常敏感。
VDDA_1P8電源軌在收發(fā)器板上分為兩個(gè)分支:VDDA1P8_TX和VDDA1P8_BB。VDDA1P8_TX電源軌在100 kHz時(shí)達(dá)到最小PSMR,約為27 dB,對(duì)應(yīng)于100kHz紋波的63.25 mV p-p,產(chǎn)生2.77 mV p-p的調(diào)制雜散。VDDA1P8_BB在5 MHz紋波頻率時(shí)測(cè)量約11 dB的最小值,相當(dāng)于0.136 mV p-p的注入紋波產(chǎn)生的0.038 mV p-p雜散。
VDDA_3P3數(shù)據(jù)顯示,在大約130 kHz及以下,PSMR低于0 dB,表示接收器1處的RF信號(hào)對(duì)來自VDDA_3P3的噪聲非常敏感。該電源軌的PSMR隨著頻率提高而上升,在5 MHz達(dá)到72.5 dB。
總之,PSMR結(jié)果表明,在這些電源軌中,VDDA1P3_AN和VDDA_3P3電源軌噪聲最令人擔(dān)憂,貢獻(xiàn)了ADRV9009收發(fā)器最大部分的耦合到接收器1的紋波量。
圖3 ADRV9009收發(fā)器的模擬電源軌在接收器1處的PSRR性能
圖3顯示了ADRV9009模擬電源軌的PSRR性能。VDDA1P3_AN的PSRR在最高 1MHz時(shí)保持平坦,約為60 dB;在5 MHz時(shí)略有下降,最小值為46 dB。這可以被視為5 MHz的0.127 mV p-p紋波,其產(chǎn)生0.001 mV p-p雜散,該雜散與調(diào)制RF信號(hào)一起位于LO頻率之上。
ADRV9009的VDDA1P8_BB電源軌的PSRR在5 MHz時(shí)達(dá)到約47 dB的最小值,而VDDA1P8_TX電源軌的PSRR不會(huì)低于約80 dB。在1 MHz以下的頻譜中,VDDA_3P3的PSRR高于所示的90 dB。測(cè)量在90 dB時(shí)發(fā)生削波,因?yàn)樽罡? MHz的最大注入紋波為20 mV p-p——這不夠高,無法產(chǎn)生高于本振的本底噪聲的雜散。該電源軌的PSRR高于所示的1 MHz以下的情況,因?yàn)殡S著頻率提高,它在4 MHz時(shí)下降到76.8 dB,其最低值在10 kHz至10 MHz范圍內(nèi)。
與PSMR結(jié)果類似,PSRR數(shù)據(jù)表明,耦合到本振頻率(特別是高于1 MHz)的大部分噪聲來自VDDA1P3_AN和VDDA_3P3電源軌。
為了確定電源是否能夠滿足噪聲要求,測(cè)量直流電源的紋波輸出,并繪制一個(gè)100 Hz至100 MHz頻率范圍的波形,例如圖4所示。在該頻譜上增加一個(gè)覆蓋層:調(diào)制信號(hào)上將出現(xiàn)邊帶雜散的閾值。覆蓋的數(shù)據(jù)是通過在幾個(gè)參考點(diǎn)將正弦紋波注入到指定電源軌而獲得的,用以了解什么紋波水平產(chǎn)生邊帶雜散,如本系列的第1部分所討論的。
圖4至圖6中所示的閾值數(shù)據(jù)是針對(duì)收發(fā)器最敏感的三個(gè)電源軌的。圖中顯示了不同DC-DC轉(zhuǎn)換器配置、使能/未使能展頻(SSFM)、通過LDO穩(wěn)壓器或低通(LC)濾波器進(jìn)行更多濾波等情況下的電源軌頻譜。這些波形是在電源板上測(cè)量,并留下了比噪聲限值低6 dB甚至更多的裕量。
圖4 為VDDA1P3_AN電源軌供電的LTM8063(不同配置)的輸出噪聲頻譜,以及該電源軌允許的最大紋波
測(cè)試
圖4顯示了VDDA1P3_AN電源軌的雜散閾值,以及LTM8063 μModule?穩(wěn)壓器不同配置的實(shí)測(cè)噪聲頻譜。 如圖4所示,在禁用展頻(SSFM)的情況下,使用LTM8063為電源軌直接供電,在LTM8063的基波工作頻率和諧波頻率處產(chǎn)生超過閾值的紋波。具體說來,紋波在1.1 MHz時(shí)超過限值0.57 mV,表明需要后置穩(wěn)壓器和濾波器的某種組合來抑制開關(guān)穩(wěn)壓器的噪聲。
如果僅增加LC濾波器(無LDO穩(wěn)壓器),則開關(guān)頻率處的紋波剛剛達(dá)到最大允許的紋波——可能沒有足夠的設(shè)計(jì)裕量來確保收發(fā)器性能最佳。增加ADP1764 LDO后置穩(wěn)壓器并開啟LTM8063的展頻模式,可以降低整個(gè)頻譜上的基波開關(guān)紋波幅度及其諧波,以及SSFM在1/f區(qū)域中引起的噪聲峰值。 通過開啟SSFM并增加LDO穩(wěn)壓器和LC濾波器,可以實(shí)現(xiàn)最佳效果,降低開關(guān)動(dòng)作所引起的剩余噪聲,給最大允許紋波留下約18 dB的裕量。
展頻將噪聲擴(kuò)散到更寬頻帶上,從而降低開關(guān)頻率及其諧波處的峰值和平均噪聲。這是通過3 kHz三角波上下調(diào)制開關(guān)頻率來做到的。這會(huì)在3 kHz處引入新的紋波,LDO穩(wěn)壓器會(huì)進(jìn)行處理。
使能SSFM后,由此產(chǎn)生的低頻紋波及其諧波在圖5和圖6所示的VDDA_1P8和VDDA_3P3輸出頻譜中顯而易見。如圖5所示,使能SSFM時(shí)LTM8074的噪聲頻譜為VDDA_1P8電源軌的最大允許紋波提供最小約8 dB的裕量。因此,滿足此電源軌的噪聲要求不需要后置穩(wěn)壓器濾波。
圖5 為VDDA_1P8電源軌供電的LTM8074(SSFM開啟)的輸出噪聲頻譜,以及該電源軌允許的最大紋波
圖6 為VDDA_3P3電源軌供電的LTM8074(不同配置)的輸出噪聲頻譜,以及該電源軌允許的最大紋波
請(qǐng)注意電源軌對(duì)低頻紋波的敏感性,因?yàn)榇嗽肼暱赡茉?.3 V供電的時(shí)鐘中引起相位抖動(dòng)。
圖6顯示了LTM8074 μModule穩(wěn)壓器不同配置的噪聲頻譜,以及3.3V VDDA_3P3電源軌的最大噪聲要求。對(duì)于此電源軌,我們使用LTM8074 Silent Switcher?μModule穩(wěn)壓器來分析結(jié)果。僅使用LTM8074的配置(無濾波器或LDO后置穩(wěn)壓器)產(chǎn)生的噪聲超過限值,無論是否使能展頻模式。
兩個(gè)備選配置的結(jié)果符合>6 dB裕量的噪聲規(guī)格:未使能SSFM的LTM8074加上LC濾波器,以及使能SSFM的LTM8074加上LDO后置穩(wěn)壓器。雖然二者均以充足的裕量滿足了要求,但LDO后置穩(wěn)壓器解決方案在此更有優(yōu)勢(shì)。這是因?yàn)閂DDA_3P3電源軌還提供3P3V_CLK1時(shí)鐘電源,因此1/f噪聲的減少相對(duì)更重要——如果不予處理,這里的噪聲可以轉(zhuǎn)化為本振中的相位抖動(dòng)。
圖7 使用LTM8063和LTM8074 μModule穩(wěn)壓器的ADRV9009收發(fā)器優(yōu)化PDN
優(yōu)化解決方案
基于上述測(cè)試結(jié)果,圖7顯示了一種優(yōu)化解決方案,當(dāng)用在ADRV9009收發(fā)器板上時(shí),它能提供>6 dB的噪聲裕量。
表1顯示了優(yōu)化PDN與標(biāo)準(zhǔn)PDN的對(duì)比。組件大小減小29.8%,效率從66.9%提高到69.9%,整體節(jié)能0.5 W。
表1 ADRV9009優(yōu)化PDN與當(dāng)前PDN的比較
當(dāng)前的PDN如圖1所示 | 優(yōu)化的PDN如圖7所示 | 相比當(dāng)前PDN,優(yōu)化PDN實(shí)現(xiàn)的改善 | |
組件大小 | 148.2 | 104.00 | 29.8% |
整體效率 | 66.9% | 69.9% | 3.0% |
功率損耗 | 1.8 W | 0.8 W | 0.5 W |
為了驗(yàn)證該優(yōu)化電源解決方案在系統(tǒng)噪聲性能方面的效果,我們執(zhí)行了相位噪聲測(cè)量。將圖7中的優(yōu)化解決方案與控制案例——ADRV9009評(píng)估板的工程版本,即使用圖1所示PDN的AD9378評(píng)估板——進(jìn)行比較。使用相同電路板,但采用圖7所示的PDN,比較相位噪聲結(jié)果。理想情況下,優(yōu)化解決方案達(dá)到或超過數(shù)據(jù)手冊(cè)參考曲線所示的性能。
圖8 ADP5054與μModule器件的PSU之間的AD9378相位噪聲性能比較,測(cè)量條件:LO = 1900 MHz,PLL BW = 425 kHz,穩(wěn)定性 = 8
圖8比較了使用標(biāo)準(zhǔn)ADP5054電源的AD9378評(píng)估板相位噪聲結(jié)果與使用LTM8063和LTM8074電源的同一評(píng)估板的結(jié)果。相比于ADP5054電源解決方案,μModule電源解決方案的性能略優(yōu),高出大約2 dB。如圖8和表2所示,由于外部本振使用了低相位噪聲信號(hào)發(fā)生器,兩種電源解決方案的測(cè)量結(jié)果均顯著低于數(shù)據(jù)手冊(cè)規(guī)格。
表2 相位噪聲測(cè)量結(jié)果,LO = 1900 MHz
偏移頻率 (MHz) | 相位噪聲 (dBc/Hz) | ||
數(shù)據(jù)手冊(cè)中的技術(shù)規(guī)格 | 評(píng)估結(jié)果 | ||
ADP5054 | LTM8063、LTM8074 | ||
0.1 | -100 | -137.74 | -137.77 |
0.2 | -115 | -143.16 | -143.32 |
0.4 | -120 | -147.37 | -147.20 |
0.6 | -129 | -149.02 | -149.04 |
0.8 | -132 | -151.81 | -151.96 |
1.2 | -135 | -151.73 | -151.22 |
1.8 | -150 | -153.97 | -153.76 |
6 | -140 | -155.10 | -154.80 |
10 | -153 | -154.51 | -154.36 |
采用兩種電源解決方案的收發(fā)器的SFDR測(cè)量結(jié)果如表3所示,兩種方案的性能相當(dāng),除了LO = 3800 MHz,這種情況下ADP5054的開關(guān)紋波開始在載波信號(hào)輸出頻譜上產(chǎn)生調(diào)制雜散,如圖9所示。
表3 ADRV9009收發(fā)器SFDR性能
LO頻率(MHz) | 無雜散動(dòng)態(tài)范圍(SFDR)(dBc) | ||||
數(shù)據(jù)手冊(cè)中的技術(shù)規(guī)格 | Tx1 | Tx2 | |||
ADP5054 | LTM8063、LTM8074 | ADP5054 | LTM8063、LTM8074 | ||
800 | 70.00 | 86.03 | 86.95 | 86.62 | 86.63 |
1800 | 70.00 | 85.94 | 87.30 | 86.01 | 85.90 |
2600 | 70.00 | 85.98 | 86.01 | 85.50 | 85.78 |
3800 | 70.00 | 73.87 | 77.42 | 73.93 | 77.31 |
4800 | 70.00 | 71.44 | 71.98 | 71.10 | 71.82 |
圖9 發(fā)射器1載波信號(hào)和電源開關(guān)頻率引起的雜散頻率。測(cè)量條件:LO = 3800 MHz,F(xiàn)bb = 7 MHz,–10 dBm
結(jié)論
不同應(yīng)用有不同要求,評(píng)估板的配電網(wǎng)絡(luò)可能需要進(jìn)一步改進(jìn)或改變。量化信號(hào)處理IC噪聲要求的能力為電源設(shè)計(jì)或只是優(yōu)化現(xiàn)有電源解決方案提供了更有效的方式。對(duì)于ADRV9009之類的高性能RF收發(fā)器,在PDN中設(shè)置噪聲注入以確定可容許多大電源噪聲,有助于我們改進(jìn)當(dāng)前PDN的空間需求、效率和至關(guān)重要的熱性能。請(qǐng)繼續(xù)關(guān)注本電源系統(tǒng)優(yōu)化系列的后續(xù)篇目。
作者簡(jiǎn)介
Pablo Perez, Jr.于2019年5月加入ADI公司,擔(dān)任ADEF高級(jí)應(yīng)用工程師。他的工作經(jīng)驗(yàn)包括修改和評(píng)估不同應(yīng)用領(lǐng)域(工業(yè)、電信、醫(yī)療、軍事)的標(biāo)準(zhǔn)開關(guān)模式電源,以及線性穩(wěn)壓器、開關(guān)穩(wěn)壓器和電源管理IC的設(shè)計(jì)驗(yàn)證和樣本評(píng)估。Pablo畢業(yè)于菲律賓奎松省盧塞納市的Manuel S. Enverga University Foundation, Inc.,獲得電子與通信工程學(xué)士學(xué)位。
John Martin Dela Cruz于2020年10月加入ADI公司,擔(dān)任電源應(yīng)用工程師。他主要負(fù)責(zé)航空航天和防務(wù)(ADEF)電源系統(tǒng)。他畢業(yè)于菲律賓大學(xué)(位于菲律賓奎松市迪里曼),獲電子工程學(xué)士學(xué)位。
評(píng)論