碳化硅如何革新電氣化趨勢
在相當(dāng)長的一段時間內(nèi),硅一直是世界各地電力電子轉(zhuǎn)換器所用器件的首選半導(dǎo)體材料,但 1891 年碳化硅 (SiC) 的出現(xiàn)帶來了一種替代材料,它能減輕對硅的依賴。SiC 是寬禁帶 (WBG) 半導(dǎo)體:將電子激發(fā)到導(dǎo)帶所需的能量更高,并且這種寬禁帶具備優(yōu)于標(biāo)準(zhǔn)硅基器件的多種優(yōu)勢。
本文引用地址:http://butianyuan.cn/article/202302/443369.htm由于漏電流更小且?guī)陡螅骷梢栽诟鼘挼臏囟确秶鷥?nèi)工作,而不會發(fā)生故障或降低效率。它還具有化學(xué)惰性,所有這些優(yōu)點進(jìn)一步鞏固了 SiC 在電力電子領(lǐng)域的重要性,并促成了它的快速普及。SiC 功率器件目前已廣泛用于眾多應(yīng)用,例如電源、純電動車電池充電的功率轉(zhuǎn)換和主驅(qū)、工業(yè)電機(jī)驅(qū)動、太陽能和風(fēng)能逆變器等可再生能源發(fā)電系統(tǒng)。
安森美(onsemi)的 1700-V EliteSiC MOSFET (NTH4L028N170M1) 提供更高擊穿電壓 (BV) SiC 方案,滿足大功率工業(yè)應(yīng)用的需求。使用兩個 1700-V 雪崩額定值的 EliteSiC 肖特基二極管(NDSH25170A、NDSH10170A),設(shè)計人員便可實現(xiàn)高溫高壓下的穩(wěn)定運行,同時提供 SiC 帶來的高效率。
近日,在接受《Power Electronics News》采訪時,安森美工業(yè)電源方案產(chǎn)品營銷總監(jiān) Ajay Reddy Sattu 指出,安森美的 EliteSiC 技術(shù)專注于兩個關(guān)鍵應(yīng)用領(lǐng)域:能源基礎(chǔ)設(shè)施和電動汽車。
Ajay Reddy Sattu
安森美工業(yè)電源方案產(chǎn)品營銷總監(jiān)
據(jù) Sattu 說,最先是在能源基礎(chǔ)設(shè)施中,雙向供電將大規(guī)模儲能系統(tǒng)與商業(yè)或電站規(guī)模的太陽能逆變器連接起來。
Sattu 說道:“雙向供電的靈活性意味著往返效率是一個重要指標(biāo);因此對于電站規(guī)模的系統(tǒng)來說,即使效率略微提高 0.5%,也能省下大量能源。比如一個典型的太陽能應(yīng)用,其中直流輸出電壓被升壓到 1100-V ,然后逆變?yōu)槿嘟涣麟?。如圖 1 所示,升壓級可以利用全 IGBT [Si IGBT + 二極管] 模塊方案或混合 IGBT [Si IGBT + SiC 二極管] 方案或全 SiC [SiC MOSFET + SiC 二極管] 方案來實現(xiàn)。雖然混合IGBT方案已經(jīng)很普遍,但隨著未來幾年 SiC 晶圓成本的降低,全 SiC 方案將對混合IGBT方案構(gòu)成挑戰(zhàn)。假設(shè)系統(tǒng)級條件為 500 V/25 A,F(xiàn)sw 為 16 kHz,輸出電壓為 800 V,使用 600 μH 升壓電感。”
從表 1 對混合 IGBT 方案和全 SiC 方案的比較可以明顯看出,在相同條件下,全 SiC 方案的總損耗低得多,因此效率更高。Sattu 表示:“采用全 SiC 模塊時,開關(guān)頻率可以提高到 40 kHz 或更高,從而使升壓電感可低至 200 μH,成本和重量得以降低?!?/p>
圖1. 太陽能電池板應(yīng)用
表1. 混合 IGBT 方案和全 SiC 方案的比較
第二個重點關(guān)注領(lǐng)域是電動汽車充電器 (EVC)。據(jù) Sattu 說,根據(jù)電壓輸入和功率水平,當(dāng)今的電動汽車充電器主要分為三級。
他指出:“1 級一般是采用家電插座輸出的 120 V 單相交流電作為輸入,最大額定電流為 15 至 20 A,充電速度非常慢。2 級采用交流 220 V 進(jìn)行充電,通常部署在家庭、工作場所或公共場所,能夠為汽車增加 12 至 80 英里/小時的里程,具體取決于功率輸出水平。2 級充電器可提供高達(dá) 7.7 至 11 kW 的充電功率,使得普通電動汽車可在大約 2 至 8 小時內(nèi)充滿電。大得多的直流快速充電器為 3 級,僅部署在商業(yè)場所,接入當(dāng)?shù)仉娏μ峁┥痰娜嚯娫础_@些系統(tǒng)可以在 30 分鐘內(nèi)為電動汽車電池增加 100 英里以上的行駛里程。”
Sattu 補(bǔ)充道:“我們來看看圖 2 所示的典型電動汽車充電站框圖。以系統(tǒng)級的直流快速充電器為例。前端是一個三相功率因數(shù)校正 (PFC) 變換器,它可采用多種拓?fù)浣Y(jié)構(gòu)實現(xiàn),如兩電平、三電平、單向或雙向。來自電網(wǎng)的電壓電平 400 [歐盟] / 480 [美國] 升壓至 700 到 1000 V。隨后的隔離 DC/DC 將總線電壓轉(zhuǎn)換為所需的輸出電壓。輸出電壓與電動汽車電池電壓(通常為 400 V 或 800 V)一致,需要覆蓋電壓充電曲線。因此,DC/DC 輸出范圍可能在 150 V 至 1500 V 范圍內(nèi)擺動。SiC MOSFET 的價值定位如下圖所示。為了適應(yīng)電動汽車電池的雙向充電/放電過程和寬電壓范圍,IGBT 被 SiC MOSFET 方案所取代?!?/p>
圖2. 電動汽車充電站框圖
設(shè)計挑戰(zhàn)
隨著越來越多的設(shè)計人員正在或已經(jīng)將 SiC 用于其設(shè)計中,對于 SiC 的質(zhì)量、可靠性和供應(yīng)情況是否長期有保障出現(xiàn)了一些擔(dān)憂。隨著 SiC MOSFET 的商用化和發(fā)展,柵極氧化層的可靠性也有了顯著提高。
柵極氧化層和保護(hù)其免受高電場影響的方法仍然是器件開發(fā)的一個關(guān)鍵焦點領(lǐng)域。改進(jìn)篩選測試以剔除隨時間推移可能有參數(shù)漂移的芯片也很重要。
在加工過程中,柵極氧化層缺陷密度必須保持在最低水平,以使 SiC MOSFET 像 Si MOSFET 一樣可靠。還必須開發(fā)創(chuàng)新的篩選方法,例如在最終電氣測試中發(fā)現(xiàn)并消除可能的較弱器件。
Sattu 說:“安森美從兩個方面考慮柵極氧化層的可靠性:本征和外部。首先,我們的EliteSiC 工藝流程經(jīng)過了強(qiáng)化,在各個工序中加入了篩選措施,以篩選出由工藝可能引起的失效模式。其次,我們還實施晶圓級或封裝級老化方法來消除早期失效。此外,作為本征可靠性研究的一部分,我們根據(jù)時間相關(guān)的介質(zhì)擊穿特性分析來評估 EliteSiC MOSFET 技術(shù),確保器件在應(yīng)用曲線所要求的范圍之外也能正常運行。顯然,氧化層厚度和溝道遷移率之間的權(quán)衡取舍限制了所使用的氧化層厚度和應(yīng)用中施加的 VGS [15 V 或 18 V],影響了長期可靠性?!?/p>
圖 3 比較了不同 VGS 下的壽命性能,它比實際應(yīng)用所采用的電壓要高得多。據(jù) Sattu 說,很明顯,我們采用遠(yuǎn)超工業(yè)和汽車行業(yè)要求的測試條件進(jìn)行了測試,并成功得到了不同工況下所對應(yīng)的失效等級。
圖3. VGS 與壽命性能的關(guān)系
VGS 遠(yuǎn)高于實際應(yīng)用中使用的電壓
寬禁帶半導(dǎo)體潛力很大,但設(shè)計人員需要意識到使用這些材料帶來的困難。以更高的開關(guān)頻率和更大的功率密度工作,可以實現(xiàn)無源元件(電感和電容)的尺寸減小,創(chuàng)建更輕更小的系統(tǒng)。然而,預(yù)測這些較小的無源元件在較高頻率下工作時的行為可能具有挑戰(zhàn)性,并且可能會出現(xiàn)熱量管理問題。寬禁帶半導(dǎo)體的工作溫度比硅基器件支持的溫度高,因此需要精心設(shè)計。在整個設(shè)計階段都要考慮更大的熱應(yīng)力,這可能會對系統(tǒng)的可靠性產(chǎn)生不利影響。再現(xiàn)或仿真讓電子器件承受極端熱應(yīng)力的惡劣工作環(huán)境,是電子設(shè)計人員面臨的主要問題之一。
熱管理的目標(biāo)是有效地從芯片和封裝中散熱。據(jù) Sattu 說,有以下幾種途徑。
他說:“首先,可以采用銅基板方案以改善從器件結(jié)到散熱器的熱阻 Rth。這一點非常重要,尤其是對于 EliteSiC M3 技術(shù)平臺而言,其具有出色的特定導(dǎo)通電阻。即使芯片很小,也可以通過使用銅基板,有效增加散熱面積,并且減少熱阻。雖然提供銅基板在工業(yè)應(yīng)用中并不常見,但安森美為 F5 和 Q2 功率集成模塊 [PIM] 提供了這種配置選項,而且目前正在開發(fā)使用銅基板的 F2 模塊。在我們最大的 PIM 模塊之一 F5 上采用了銅基板后,結(jié)果是 Rthjs 改善了 9.3%,如下圖所示。此外,在同一 PCB 板上有多個 PIM 模塊的應(yīng)用中,采用銅基板可以改善翹曲?!?/p>
他補(bǔ)充道:“第二個改進(jìn)來自于 SiC 器件燒結(jié)技術(shù)的實施。這已經(jīng)成為汽車產(chǎn)品的主流,將來安森美的工業(yè)產(chǎn)品可能會采用這種芯片貼裝(die-attach)工藝代替?zhèn)鹘y(tǒng)的焊接工藝,以進(jìn)一步降低熱阻。”
圖4. 熱性能
可再生能源
隨著太陽能系統(tǒng)母線電壓達(dá)到 1100 V 至 1500 V,可再生能源應(yīng)用正穩(wěn)步推進(jìn)到更高的電壓??蛻粢髶舸╇妷焊叩?MOSFET 來支持這種改進(jìn)。新型 1700-V EliteSiC MOSFET 的最大 VGS 范圍為 -15 V/25 V,適合柵極電壓上升至 -10 V 的快速開關(guān)應(yīng)用,可提高系統(tǒng)的可靠性。
Sattu 說:“對于使用 1500 V 總線的發(fā)電站而言,為了滿足諸如減少宇宙射線引起的失效、提高效率和提供儲能功能之類的特殊要求,將需要采用高效率的功率半導(dǎo)體。我們的 SiC MOSFET 和二極管額定值 1.7 kV,可提升 1500 V 直流總線的系統(tǒng)性能并降低成本。這里的關(guān)鍵是達(dá)成類似于當(dāng)今硅基方案的單通道成本或最大功率點跟蹤。隨著 SiC 制造成本的優(yōu)化,基于 SiC 的 1.7 kV 升壓方案將能顯著降低系統(tǒng)成本。通過垂直整合,安森美既有技術(shù)實力又有供應(yīng)鏈能力來成為這一領(lǐng)域的主要參與者?!?/p>
前景和下一步規(guī)劃?
除了太陽能和電動汽車充電器之外,基于 SiC 的器件在其他幾個應(yīng)用領(lǐng)域也有顯著優(yōu)勢,尤其是額定電壓 650 V 的器件。
據(jù) Sattu 說,數(shù)據(jù)中心電源就是這樣一個例子?!叭缦聢D所示,新的 80 Plus Titanium 的要求和輕載效率的要求,使 SiC MOSFET 的使用方式發(fā)生了系統(tǒng)層面的轉(zhuǎn)變。例如,當(dāng)前端采用圖騰柱 PFC 實現(xiàn)方案時,SiC MOSFET 將用于 PFC 的快速橋臂和 DC/DC 級的初級側(cè)。這里的關(guān)鍵不僅僅是性能指標(biāo),還要滿足成本指標(biāo)。安森美目前正在開發(fā)新的 650-V M3 產(chǎn)品以取代現(xiàn)有的 M1 產(chǎn)品,進(jìn)一步改善基準(zhǔn)品質(zhì)因數(shù)和成本狀況?!?/p>
圖5. 數(shù)據(jù)中心設(shè)計
Sattu 補(bǔ)充說:“另一種新興應(yīng)用是工業(yè)電機(jī)控制市場,其對高效率和出色的熱管理、低 EMI、良好的可控性和高可靠性有著嚴(yán)格的要求。類似于能源基礎(chǔ)設(shè)施市場,與 Si IGBT 相比,SiC 會為電機(jī)控制應(yīng)用提供更好的價值定位。例如,對于伺服驅(qū)動器,在芯片電流額定值相似的情況下,脈沖電流額定值會更高,因而使用被動散熱方案即可,并且有可能將驅(qū)動系統(tǒng)與電機(jī)本身集成。考慮到 90% 以上的操作是在恒速或低扭矩下進(jìn)行的,使用 SiC 可以顯著改善導(dǎo)通損耗。其他一些新興應(yīng)用,如固態(tài)斷路器、固態(tài)變壓器和燃料電池逆變器等,采用 EliteSiC 產(chǎn)品組合也能提供高效率和熱優(yōu)勢?!?/p>
對于電動汽車和可再生能源系統(tǒng),電源管理方案必須能夠改善性能、節(jié)約成本并縮短開發(fā)時間。SiC 堆疊方法能夠提高性能和降低價格,目前對于電動汽車、商業(yè)運輸、可再生能源和存儲系統(tǒng)的設(shè)計人員非常有利。
SiC 器件廣泛應(yīng)用于汽車行業(yè),尤其是電動汽車和插電式混合動力汽車的制造。下一代電動汽車的動力系統(tǒng)必須能夠提升車輛的效率(從而增加行駛里程)和電池充電速度。
SiC 逆變器被證明是解決這些問題的關(guān)鍵器件。基于 SiC 的逆變器可以實現(xiàn)高達(dá) 99% 的效率,而標(biāo)準(zhǔn)逆變器將能量從電池傳輸?shù)诫姍C(jī)的效率為 97% 至 98%。值得注意的是,小數(shù)點后一位或兩位的效率提升能對整車產(chǎn)生巨大的積極影響。
由于能源需求的增加和可再生能源使用的擴(kuò)大,微電網(wǎng)在減少溫室氣體排放和對化石燃料的依賴方面變得更加重要。然而,微電網(wǎng)系統(tǒng)不能采用硅基固態(tài)逆變器和開關(guān),因為它們體積太大且效率低下。SiC 等寬禁帶半導(dǎo)體具有更高的擊穿電壓和開關(guān)頻率,是開發(fā)高效可靠微電網(wǎng)的關(guān)鍵因素。
由于來自非線性負(fù)載的非正弦電流,連接到網(wǎng)絡(luò)的大量電子設(shè)備會在能量分配系統(tǒng)中產(chǎn)生大量諧波。采用合適的有源或無源濾波器是消除能量分配系統(tǒng)中的諧波失真的經(jīng)典方法之一。通過將諧波補(bǔ)償功能直接集成到轉(zhuǎn)換器中,無需特殊濾波器,基于 SiC 的功率器件能夠在非常高的開關(guān)電壓和頻率下工作,從而減小設(shè)計的尺寸、復(fù)雜度和成本。
雖然 SiC 的特性已經(jīng)為人所知有一段時間了,但第一批 SiC 功率器件是最近才生產(chǎn)出來的,始于 21 世紀(jì)初,使用的是 100 mm 晶圓。幾年前,大多數(shù)制造商轉(zhuǎn)向 150 mm 晶圓,最近又轉(zhuǎn)向大規(guī)模生產(chǎn) 200 mm(8 英寸)晶圓。
由于面臨保持相同質(zhì)量和良率的挑戰(zhàn),SiC 晶圓從 4 英寸到 6 英寸的轉(zhuǎn)變并不順利。材料的特性是 SiC 制造中最大的問題。由于硬度極高(幾乎接近鉆石),SiC 的晶體形成和加工需要更長的時間、更多的能量和更高的溫度。此外,最常見的晶體結(jié)構(gòu) (4H-SiC) 具有高透明度和高折射率,因此難以分析材料有無可能影響外延生長或最終元件良率的表面缺陷。
結(jié)晶堆垛層錯、表面顆粒、微管、凹坑、劃痕和污漬是制造 SiC 基板時可能出現(xiàn)的主要缺陷。這些變數(shù)可能對 SiC 器件的性能產(chǎn)生負(fù)面影響;相比于 100 mm 晶圓,它們在 150 mm 晶圓上出現(xiàn)的頻率更高。SiC 是世界上第三硬的復(fù)合材料,而且非常易碎,因此其制造存在周期時間、成本和切割性能方面的困難。向 200-mm SiC 晶圓的轉(zhuǎn)變將使汽車和工業(yè)市場受益匪淺,因為它能加快這些市場的系統(tǒng)和產(chǎn)品的電氣化進(jìn)程。隨著產(chǎn)量的提高,這對促進(jìn)規(guī)模經(jīng)濟(jì)至關(guān)重要。
評論