當輸入和輸出電壓接近時,為什么難以獲得穩(wěn)定的輸出電壓?
自舉電容負責(zé)維持頂部N溝道MOSFET正常運行。圖1的橙色高亮部分顯示了這一點。
本文引用地址:http://butianyuan.cn/article/202408/462416.htm圖1.LT8610數(shù)據(jù)手冊中展示自舉電容功能的框圖。
當頂部N溝道MOSFET閉合時,開關(guān)節(jié)點的電位與輸入源大致相同。這意味著頂部MOSFET的源極電壓高于柵極電壓(來自柵極驅(qū)動器)。若沒有高于NMOS閾值電壓的正柵源電壓,MOSFET將無法導(dǎo)通。因此,需要使用自舉電容來確保柵極電壓始終高于源極電壓。
省略自舉電容不會給設(shè)計人員帶來什么明顯的好處,這樣做可能是為了縮減BOM尺寸和成本,或者僅僅是忘記包含這些元件。然而,此決定會帶來負面影響,因為要幫助芯片為頂部FET的柵極提供足夠的電壓以使其完全導(dǎo)通,自舉電容是必不可少的,如圖2所示。
圖2.無自舉電容的開關(guān)節(jié)點。
如果頂部FET未完全導(dǎo)通,器件將無法調(diào)節(jié)輸出電壓。FET將在線性區(qū)域內(nèi)工作,消耗大量功率并使芯片升溫。
為了解決這個問題,設(shè)計人員必須添加自舉電容。設(shè)計人員如果不確定要添加多大的電容,則應(yīng)在數(shù)據(jù)手冊示例中選擇一個最接近其應(yīng)用的值。如果器件需要自舉電容,忘記添加該電容將導(dǎo)致SMPS故障。添加自舉電容將能讓頂部柵極驅(qū)動器有足夠的驅(qū)動強度來操作處于飽和區(qū)的FET,使其充當開關(guān),并向SW節(jié)點提供全部輸入電壓。這一點可以從圖3中看出。
圖3.帶自舉電容的開關(guān)節(jié)點。
設(shè)計人員常常選擇較高的開關(guān)頻率以減小電路板尺寸,但由于開關(guān)損耗增加,能效比會降低。然而,當器件具有高頻率和高降壓比時,占空比會被迫變小,并可能降至最小占空比值以下。最小占空比如公式1所示。
其中,t min-on 定義為電感由輸入源充電的最短時間。開關(guān)轉(zhuǎn)換器具有規(guī)定的最小導(dǎo)通時間值,設(shè)計人員必須遵守該值以確保FET正常運行(因為FET無法瞬間完成切換)。設(shè)計人員可以自由選擇開關(guān)頻率。然而,當指定的開關(guān)頻率過高以及降壓比過大時,導(dǎo)通時間就會被迫低于最小值。
當導(dǎo)通時間被迫低于其最小值時,電感電流在一個周期內(nèi)的放電速度將比充電速度更快。當新的周期開始時,起點將低于前幾個周期的起點,這種現(xiàn)象被稱為電流降。最終,電流和輸出電壓都會下降到很低的程度,以至于器件內(nèi)部產(chǎn)生更大的占空比(具有更長的導(dǎo)通時間)來調(diào)節(jié)輸出電壓,如圖4所示。
圖4.違反最小導(dǎo)通時間的電流波形。
電感電流紋波的下降也會在轉(zhuǎn)換器的輸出電壓中表現(xiàn)出來。輸出電壓紋波變得更加嘈雜,這可能會影響敏感負載并降低EMI性能。此影響可以從圖5中看出。
圖5.違反最小導(dǎo)通時間的輸出波形。
這個問題有一個簡單的解決辦法。導(dǎo)通時間主要受開關(guān)頻率影響,因此設(shè)計人員可以通過降低頻率來解決該問題。但這樣做的代價是需要更大的功率級元件,主要是更大的電感。降壓轉(zhuǎn)換器的功能改進體現(xiàn)在周期間一致的導(dǎo)通時間,以及圖6中穩(wěn)定的電流紋波和圖7中穩(wěn)定的輸出紋波。
圖6.穩(wěn)定的電流紋波
圖7.穩(wěn)定的輸出紋波。
某些應(yīng)用可能需要較小的降壓比,這可能會違反轉(zhuǎn)換器的最小關(guān)斷時間規(guī)范。t min-off 是t min-on 的補充,定義為電感未由輸入源充電的最短時間。與導(dǎo)通時間要求類似,SMPS必須關(guān)斷規(guī)定的時間以確保FET正常運行(允許正常放電)。當要求的占空比大于允許的最大占空比(由式2給出)時,就會違反最小關(guān)斷時間規(guī)范。
如果占空比超過最大值,SMPS將折返其配置的頻率,以避免違反最小關(guān)斷時間規(guī)范。這一點可以從圖8中看出。器件最初配置為2MHz頻率。
圖8.違反最小關(guān)斷時間的電流波形。頻率折返至335kHz。
在圖9中可以看到,隨著負載增加,器件頻率會折返以保持恒定的輸出電壓。器件在DCM下運行至約0.28A,這就是頻率下降到約495kHz然后又回升至657kHz的原因。以657kHz的頻率運行時,器件可以保持正常操作,直至負載達到0.7A。此時頻率降低以保持適當?shù)妮敵鲭妷?,直至負載達到1.4A左右。發(fā)生這種情況時,器件無法在保持輸出電壓的同時將頻率降低到100kHz以下(該器件指定的最低反饋頻率),因此輸出電壓開始下降。
圖9.負載調(diào)整和折返頻率。隨著負載增大,頻率會折返以維持穩(wěn)定的輸出電壓。
在圖9中可以看到,隨著負載增加,器件頻率會折返以保持恒定的輸出電壓。器件在DCM下運行至約0.28A,這就是頻率下降到約495kHz然后又回升至657kHz的原因。以657kHz的頻率運行時,器件可以保持正常操作,直至負載達到0.7A。此時頻率降低以保持適當?shù)妮敵鲭妷?,直至負載達到1.4A左右。發(fā)生這種情況時,器件無法在保持輸出電壓的同時將頻率降低到100kHz以下(該器件指定的最低反饋頻率),因此輸出電壓開始下降。
這個問題的解決辦法不像違反最小導(dǎo)通時間規(guī)范那么簡單。設(shè)計人員通常需要滿足特定的輸入電壓和輸出電壓要求,因此無法隨意更改占空比來延長關(guān)斷時間。如果設(shè)計人員可以提供更大的輸入電壓,則器件將以設(shè)定的頻率工作,因為較小占空比會防止器件違反最小關(guān)斷時間規(guī)范。這一點可以從圖10中看出,其中器件以設(shè)定的2MHz頻率運行。
圖10.未違反最小關(guān)斷時間的電流波形。設(shè)定頻率為2MHz。
與最小導(dǎo)通時間相反,降低頻率只會在一定負載以下起作用。如果設(shè)計人員不能充分降低開關(guān)頻率以避免違反最小關(guān)斷時間規(guī)范,那么理想的做法是選擇另一種能夠處理更高占空比和更短導(dǎo)通時間的器件。
評論