工程師:一款通過USB獲取高效雙軌電源的設(shè)計(jì)
設(shè)計(jì)5V以外電源的小功率USB電路時(shí),必須確定是使用獨(dú)立電池,還是使用來自主機(jī)的小型電源。如果電路需要大于5V的雙軌電源(如采用了基于運(yùn)放的儀表放大器),或必須用于便攜計(jì)算機(jī)如筆記本電腦上,則問題就更復(fù)雜了。
本文引用地址:http://butianyuan.cn/article/227240.htmUSB2.0標(biāo)準(zhǔn)規(guī)定了對(duì)連接設(shè)備的功率要求,即耗電最大100mA,視為小功率;耗電最大500mA,則視為大功率。本文所述電路原用于一個(gè)熱致發(fā)光(TL)儀器設(shè)計(jì),設(shè)計(jì)中的微控制器、USB接口控制器,以及10個(gè)運(yùn)放均作為小功率器件,從一個(gè)USB端口獲得全部電源。
設(shè)備的運(yùn)行需要有高性能、低噪聲拾取,使系統(tǒng)射頻輻射盡可能低。在搭建電路以前,做過仿真與驗(yàn)證,然后用于TL系統(tǒng)。本設(shè)計(jì)的吸引力在于,由于它采用的是常見元器件,提高了可重復(fù)性,同時(shí)降低了成本。
圖1
電路運(yùn)行原理基于反激概念(圖1),運(yùn)行期間,一只小型變壓器受一只脈沖調(diào)制555非穩(wěn)電路的驅(qū)動(dòng),工作頻率在115kHz~300kHz。高工作頻率可以使電路的整體尺寸較小,同時(shí)提供相對(duì)較高的功率輸出以及良好的調(diào)節(jié)性,使輸出濾波更容易做到低紋波。
實(shí)際電路中用一只MOSFET來實(shí)現(xiàn)開關(guān)。圖1中,二極管對(duì)正的VOUT表現(xiàn)為正偏。將二極管和一個(gè)變壓器繞組極性反向,就獲得一個(gè)負(fù)的VOUT。電路工作在三個(gè)不同的相位。在相位一,開關(guān)閉合,因電流流過變壓器初級(jí),能量以磁場(chǎng)形式存儲(chǔ)起來。二極管反偏,次級(jí)沒有電流流過。
在相位二,開關(guān)打開,二極管變成正偏,能量從磁場(chǎng)傳送給電容C。在相位三,能量的轉(zhuǎn)儲(chǔ)完成,在開關(guān)漏源電容中存儲(chǔ)的任何剩余電荷都被完全釋放。然后重復(fù)這個(gè)循環(huán)。
為更好地解釋電路的工作原理,比較簡(jiǎn)單的辦法是假定恰在時(shí)間t=0以前,濾波器電容已經(jīng)放電到標(biāo)稱輸出電壓,而通過變壓器初級(jí)線圈的電流為零。t=0 時(shí),開關(guān)閉合,電流開始流經(jīng)初級(jí)線圈。這樣就會(huì)在次級(jí)線圈上產(chǎn)生一個(gè)電壓,極性如圖1所示。由于二極管是反偏,因此沒有次級(jí)電流流過,次級(jí)線圈相當(dāng)于開路。變壓器初級(jí)端的作用就好比一個(gè)簡(jiǎn)易裝的電感器。初級(jí)電流呈線性增加,公式如下:
在開關(guān)閉合期間,次級(jí)線圈上的感應(yīng)電壓為nVCC。因此,二極管必須承受的最小反偏電壓為(nVCC+VOUT)。過了既定時(shí)間后,開關(guān)打開。在實(shí)際電路中,這相當(dāng)于MOSFET被關(guān)閉。假設(shè)初級(jí)線圈中的電流在該時(shí)刻為IPK,則電感器中存儲(chǔ)的磁場(chǎng)能量就等于:
由于初級(jí)線圈與次級(jí)線圈之間的磁通量,當(dāng)初級(jí)電路開路時(shí),電感器中存儲(chǔ)的但正在崩潰的磁場(chǎng)在次級(jí)端中感應(yīng)出了足夠高的電壓(》VOUT),使二極管正偏。電流的初始值為I2=IPK/n。在二極管正偏期間,次級(jí)線圈上的電壓將為(VOUT+0.7)。這也可以看作初級(jí)端電壓向下變換為VOUT/n。因此,當(dāng)開關(guān)打開時(shí),它必須承受的實(shí)際電壓是:
這個(gè)公式強(qiáng)調(diào)了反激轉(zhuǎn)換器相對(duì)于有相當(dāng)輸入輸出電壓的升壓轉(zhuǎn)換器的優(yōu)勢(shì),即當(dāng)開關(guān)打開時(shí),降低了它必須承受的電壓。事實(shí)上,“關(guān)斷”周期的電壓降低到一個(gè)值,該值由變壓器線圈匝數(shù)比確定。這樣就可以使用較低擊穿電壓的MOSFET。另外,在升壓轉(zhuǎn)換器拓?fù)渲校O管必須同時(shí)承受“開啟”時(shí)的高電流,以及“關(guān)斷”時(shí)的高反向電壓。而在反激轉(zhuǎn)換器中,次級(jí)端的二極管在電流較低時(shí)(IPK/n),需要承受高電壓。這樣就允許使用較小電容的二極管,從而獲得較快的開關(guān)速度,因而減少了能耗,提高了效率。
雖然這超出了我們的電流范圍,仍可以計(jì)算輸出電壓,方法是讓L1中的能量輸入量等于傳送給負(fù)載RLOAD的能量。穩(wěn)態(tài)時(shí),輸出與開關(guān)的占空比D以及開關(guān)工作的頻率有關(guān),即開路輸出電壓公式為:
在圖2的實(shí)際電路中,可以找到圖1基礎(chǔ)反激電路的所有元件。不過,這里做了一些微調(diào),以實(shí)現(xiàn)更好的運(yùn)行穩(wěn)定性。例如,配置兩只輸出二極管,這樣就可以獲得雙軌輸出。另外,正電壓軌反饋由R4和R5構(gòu)成的分壓器采樣,其電平由電容C2做平順。普通的555非穩(wěn)態(tài)工作時(shí)也可能產(chǎn)生輸出波形,這是由于時(shí)序電容(C1)通過R1和R2的和,從VCC充電,并通過R2放電。在所使用的電阻值(即R2》》R1)下,占空比接近50%。充電/放電電壓被內(nèi)部設(shè)定為 VCC/3和2VCC/3(即,如果在5V下運(yùn)行,則分別為1.67V和3.33V)。沒有反饋時(shí),圖2中給出的開環(huán)輸出電壓約為20V。
反饋工作原理如下:晶體管Q1關(guān)斷,直到其基極電壓(VBE)約為0.55V。這樣,輸出電壓可依照以下公式計(jì)算:
由于反激的作用,輸出電壓持續(xù)升高,Q1被驅(qū)動(dòng)得更厲害,使其集電極電壓下降。由于集電極連接到555定時(shí)器的控制輸入端,其標(biāo)稱的上限約為(2VCC/3),于是使電容以相同的速率充放電,但處于一個(gè)狹窄的電壓區(qū)間。其效果是,同時(shí)減小了用于驅(qū)動(dòng)MOSFET開關(guān)的輸出脈沖的開關(guān)次數(shù)。頻率與占空比(D)上的凈變動(dòng)使VOUT下降,最終降低了反饋電壓,也減少了Q1的“導(dǎo)通”時(shí)間。
電路需謹(jǐn)慎設(shè)置的其中一項(xiàng)是反激變壓器。經(jīng)過測(cè)試,多款自制變壓器的工作性能良好。最終確定的方案是重新使用一個(gè)RFI抑制電感的磁芯,它主要出現(xiàn)在電視機(jī)開關(guān)電源的電源輸入端。變壓器初級(jí)采用多股繞線,以減少串聯(lián)電阻。例如,使用四股0.3mm絕緣銅線,緊密纏繞七匝,所得初級(jí)電感為30μH,測(cè)得電阻為0.03Ω。較低的線圈電阻減少了電感器在開關(guān)時(shí)產(chǎn)生的焦耳熱,從而達(dá)到更高的效率。RS-Electronics(RS庫(kù)存號(hào)647-9446,由Epcos生產(chǎn))現(xiàn)有一款適用的、市場(chǎng)上可以買到的鐵氧體磁芯和繞線骨架套件。
進(jìn)一步的優(yōu)化做法是,D1和D2采用大電流、高速、低正向壓降的肖特基二極管。在MOSFET的柵極另加一只反偏二極管,以減少RFI。5VUSB線上加一個(gè)100mH扼流圈,也進(jìn)一步降低了開關(guān)噪聲。
圖3 顯示了轉(zhuǎn)換器的上電瞬態(tài)響應(yīng)
鑒于我們?cè)O(shè)計(jì)的目的,USB端口被作為一個(gè)5V電源,串接了一個(gè)10Ω電阻,以防最差情況下的500mA電流。100μF的去耦電容C5用于防止在電源軌中產(chǎn)生開關(guān)噪聲。在負(fù)載為50Ω時(shí),測(cè)得的輸出效率大約為72%,輸出電壓跌至±7.6V。輸出也成功地連接到78L05等線性穩(wěn)壓器以獲得其它電壓。在設(shè)計(jì)方面,可以進(jìn)一步優(yōu)化之處是用軟件控制輸出的切換。這里我們不做細(xì)述,但用一個(gè)獨(dú)立的有源晶體管調(diào)節(jié)555的開或關(guān)的方法可以實(shí)現(xiàn)待機(jī)或激活操作。
評(píng)論