關(guān) 閉

新聞中心

EEPW首頁(yè) > 安全與國(guó)防 > 設(shè)計(jì)應(yīng)用 > LTE標(biāo)準(zhǔn)下Turbo碼編譯碼器的集成設(shè)計(jì)

LTE標(biāo)準(zhǔn)下Turbo碼編譯碼器的集成設(shè)計(jì)

作者: 時(shí)間:2010-11-14 來(lái)源:網(wǎng)絡(luò) 收藏

  [1](Long Term Evolution)是3GPP展開(kāi)的對(duì)UMTS技術(shù)的長(zhǎng)期演進(jìn)計(jì)劃。具有高數(shù)據(jù)速率、低延遲、分組傳送、廣域覆蓋和向下兼容等顯著優(yōu)勢(shì)[2],在各種“準(zhǔn)4G”標(biāo)準(zhǔn)中脫穎而出,最具競(jìng)爭(zhēng)力和運(yùn)營(yíng)潛力。運(yùn)營(yíng)商普遍選擇,為全球移動(dòng)通信產(chǎn)業(yè)指明了技術(shù)發(fā)展的方向。設(shè)備制造商亦紛紛加大在LTE領(lǐng)域的投入,其中包括華為、北電、NEC和大唐等一流設(shè)備制造商,從而有力地推動(dòng)LTE不斷前進(jìn),使LTE的商用相比其他競(jìng)爭(zhēng)技術(shù)更加令人期待。

  [3]以其接近香農(nóng)極限的優(yōu)異糾錯(cuò)性能被選為L(zhǎng)TE標(biāo)準(zhǔn)的信道編碼方案之一[4]。對(duì)Turbo編譯碼器進(jìn)行集成設(shè)計(jì),能夠加速LTE的商用步伐,具有廣闊的應(yīng)用前景。在不同的信道環(huán)境中,通信系統(tǒng)對(duì)信息可靠性和數(shù)據(jù)實(shí)時(shí)性具有不同的指標(biāo)要求,實(shí)際應(yīng)用中必須對(duì)二者進(jìn)行適當(dāng)折中。因此,硬件設(shè)計(jì)一種糾錯(cuò)性能與譯碼時(shí)延可靈活配置的編譯碼器更具商業(yè)價(jià)值。

  Altera公司推出的功率優(yōu)化、性能增強(qiáng)的Stratix III系列產(chǎn)品采用了與業(yè)界領(lǐng)先的Stratix II系列相同的體系結(jié)構(gòu),含有高性能自適應(yīng)邏輯模塊(ALM),支持40多個(gè)I/O接口標(biāo)準(zhǔn),具有業(yè)界一流的靈活性和信號(hào)完整性。Stratix III 和Quartus II軟件相結(jié)合后,為工程師提供了極具創(chuàng)新的設(shè)計(jì)方法,進(jìn)一步提高了性能和效能[5]。Stratix III L器件邏輯單元較多,為幀長(zhǎng)可配置編譯碼器的FPGA設(shè)計(jì)提供了便利條件。

  Turbo碼的誤碼性能在很大程度上取決于信息幀長(zhǎng),信息幀越長(zhǎng),譯碼性能越好,代價(jià)是譯碼延時(shí)的增大?;谶@一點(diǎn),本設(shè)計(jì)提出一種幀長(zhǎng)可配置的Turbo碼編譯碼器的FPGA實(shí)現(xiàn)方案,詳細(xì)介紹了該系統(tǒng)中交織器的工作原理,并對(duì)時(shí)序仿真結(jié)果和功能實(shí)現(xiàn)情況進(jìn)行了分析,為L(zhǎng)TE標(biāo)準(zhǔn)下Turbo編譯碼專用集成芯片的開(kāi)發(fā)提供了參考。

1 幀長(zhǎng)可配置的Turbo編譯碼器的系統(tǒng)結(jié)構(gòu)

  LTE標(biāo)準(zhǔn)中,信道編碼主要采用Tail Biting(咬尾)卷積碼和Turbo編碼[4]兩種方案。其中Turbo碼碼率為1/3,由兩個(gè)生成多項(xiàng)式系數(shù)為(13,15)的遞歸系統(tǒng)卷積碼(RSC)和一個(gè)QPP(二次置換多項(xiàng)式)隨機(jī)交織器組成,采用典型的PCCC編碼結(jié)構(gòu)。

  根據(jù)Turbo碼編譯碼結(jié)構(gòu)原理可知,信息幀長(zhǎng)關(guān)鍵取決于交織深度的大小,如果交織器能夠根據(jù)不同幀長(zhǎng)參數(shù)自動(dòng)植入不同的交織圖樣,并對(duì)其他模塊進(jìn)行相應(yīng)參數(shù)控制,即可實(shí)現(xiàn)設(shè)計(jì)功能。由此得到可配置Turbo編譯碼器的設(shè)計(jì)思想:在編譯碼之前,由鍵盤(pán)電路輸入信息幀長(zhǎng),系統(tǒng)據(jù)此對(duì)編譯碼器進(jìn)行初始化,主要包括設(shè)置電路中存儲(chǔ)器的深度,計(jì)算、存儲(chǔ)交織圖樣,并通過(guò)LCD同步顯示幀長(zhǎng)信息;初始化過(guò)程結(jié)束時(shí)輸出狀態(tài)標(biāo)志位,編譯碼器進(jìn)入準(zhǔn)備狀態(tài),一旦有數(shù)據(jù)輸入,即啟動(dòng)編譯碼流程。由此得到Turbo編譯碼器系統(tǒng)結(jié)構(gòu)圖如圖1所示。


  圖1的Turbo碼編譯碼器中,所有有關(guān)信息長(zhǎng)度的參數(shù)均設(shè)置為輸入變量,包括存儲(chǔ)器深度、計(jì)數(shù)器周期等,以方便配置。

2 FPGA功能模塊的設(shè)計(jì)與實(shí)現(xiàn)

  2.1 交織模塊的設(shè)計(jì)

  交織器是Turbo編譯碼器的主要構(gòu)成部分之一,其能否根據(jù)幀長(zhǎng)參數(shù)產(chǎn)生相應(yīng)的交織圖樣也是本設(shè)計(jì)的關(guān)鍵所在。LTE標(biāo)準(zhǔn)中規(guī)定交織器采用QPP偽隨機(jī)交織方案,交織長(zhǎng)度范圍為40~6 114,該方案對(duì)不同幀長(zhǎng)產(chǎn)生不同的交織圖樣,能夠有效改善碼字的漢明距離和碼重分布。假設(shè)輸入交織器的比特序列為d0,d1,…,dK-1,其中K為信息序列幀長(zhǎng),交織器輸出序列d′0,d′1,…,d′K-1。則有:



  參數(shù)f1和f2取決于交織長(zhǎng)度K,具體值可參見(jiàn)參考文獻(xiàn)[4]。

  傳統(tǒng)交織器的FPGA設(shè)計(jì)一般采用軟件編程的方法。根據(jù)通信協(xié)議,將所確定幀長(zhǎng)的交織圖樣預(yù)先計(jì)算出來(lái),生成存儲(chǔ)器初始化文件(.mif或.hex格式)載入到ROM中[6]。這樣雖然降低了硬件復(fù)雜度,卻不能自行配置編碼幀長(zhǎng),缺乏靈活性和通用性。因此,設(shè)計(jì)中將交織算法集成于FPGA內(nèi)部,需要改變信息幀長(zhǎng)時(shí)啟動(dòng)交織器重新計(jì)算交織地址存儲(chǔ)于RAM中。QPP交織器的硬件結(jié)構(gòu)框圖如圖2所示。

  圖2中,在系統(tǒng)初始化階段,由鍵盤(pán)電路采集輸入的信息幀長(zhǎng)K,經(jīng)消抖處理,一路傳輸給LCD同步顯示模塊,另一路傳送到f1、f2運(yùn)算單元,查表得到f1、f2的值,提供給交織算法集成模塊。

  交織算法集成單元是交織器設(shè)計(jì)的核心部分。主要功能是根據(jù)LTE協(xié)議標(biāo)準(zhǔn)以及參數(shù)K、f1、f2,在時(shí)序控制模塊的約束下,計(jì)算交織地址。運(yùn)算過(guò)程中,將FPGA不能綜合的對(duì)任意整數(shù)取余的運(yùn)算,均轉(zhuǎn)化為固定次數(shù)的加減循環(huán)操作,在時(shí)鐘管理模塊的控制下,采取小時(shí)鐘計(jì)算、大時(shí)鐘輸出的措施,保證交織數(shù)據(jù)的正確讀取。

  計(jì)算交織地址的同時(shí)產(chǎn)生寫(xiě)入地址,將交織地址順序存儲(chǔ)到雙口RAM中,由此完成了交織器的主體設(shè)計(jì)。隨后發(fā)送握手信號(hào),可以開(kāi)始Turbo碼編譯碼流程。

  因?yàn)椴⒉皇敲繋畔⒕幾g碼時(shí)都需要運(yùn)行交織算法模塊,所以只是在初始化階段載入交織地址,使交織算法與編譯碼器分時(shí)工作。調(diào)用交織器模塊時(shí)只需將順序地址輸入到雙口RAM的讀地址端,便能得到既定幀長(zhǎng)的QPP偽隨機(jī)交織地址,不會(huì)增加譯碼延時(shí)。得到交織圖樣以后即可進(jìn)行交織、解交織過(guò)程[7]。

  2.2 Turbo碼編碼器的設(shè)計(jì)

  在完成交織模塊的基礎(chǔ)上對(duì)Turbo碼編碼器進(jìn)行FPGA設(shè)計(jì)。Turbo碼編碼器由RSC(遞歸系統(tǒng)卷積碼)子編碼器、交織器、復(fù)接電路等構(gòu)成,硬件實(shí)現(xiàn)框圖如圖3所示。

  系統(tǒng)初始化完畢后,交織器已存儲(chǔ)有對(duì)應(yīng)幀長(zhǎng)的交織圖樣,編碼器首先接收到一幀信息存儲(chǔ)于RAM中,開(kāi)始信號(hào)啟動(dòng)編碼過(guò)程。在時(shí)鐘管理模塊和時(shí)序控制模塊的指引下,計(jì)數(shù)器產(chǎn)生順序地址,再按該順序地址訪問(wèn)交織器得到交織地址,分別以順序地址和交織地址從存儲(chǔ)有信息序列的RAM中讀取數(shù)據(jù)進(jìn)入對(duì)應(yīng)的RSC進(jìn)行編碼,同時(shí)復(fù)接電路對(duì)信息位和校驗(yàn)位進(jìn)行并串轉(zhuǎn)換,一幀信息編碼完畢對(duì)子編碼器做歸零處理。

  2.3 Turbo碼譯碼器的設(shè)計(jì)

  Turbo碼譯碼器相對(duì)于編碼器來(lái)說(shuō)硬件結(jié)構(gòu)更加復(fù)雜,根據(jù)譯碼原理和交織器實(shí)現(xiàn)方式,得到譯碼器實(shí)現(xiàn)結(jié)構(gòu)圖如圖4所示。


上一頁(yè) 1 2 下一頁(yè)

關(guān)鍵詞: Turbo碼 FPGA LTE Atlera公司

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉