新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 基于FPGA的SOC系統(tǒng)中的串口設(shè)計

基于FPGA的SOC系統(tǒng)中的串口設(shè)計

——
作者: 時間:2008-01-10 來源: 收藏

  1 概述

  在基于設(shè)計中,常使用作為通信接口,但直接用進(jìn)行通信數(shù)據(jù)的處理是比較繁雜的,特別是直接使用進(jìn)行通信的協(xié)議的解釋和數(shù)據(jù)打包等處理,將會消耗大量的FPGA硬件資源。

  為簡化設(shè)計,降低硬件資源開銷,可以在FPGA中利用IP核實(shí)現(xiàn)的嵌入式微處理器來對串口數(shù)據(jù)進(jìn)行處理。

  本文中的設(shè)計采用了XILINX的FPGA,可選用的嵌入式微處理器IP核種類繁多,但基于對硬件資源開銷最少的考慮,最終選用了Picoblaze。

  嵌入式微處理器PicoBlaze適用于Spartan-II/E、CoolRunner-II和Virtex系列FPGA,運(yùn)行速度可達(dá)到40MIPS以上,提供49個不同的指令,16個寄存器,256個地址端口,1個可屏蔽的中斷。其性能超過了傳統(tǒng)的8bit微處理器。嵌入式微處理器Picoblaze的功能、原理見參考文獻(xiàn)[1]。

  Picoblaze使用靈活,但其缺點(diǎn)是可尋址的存儲空間非常有限,因此為滿足實(shí)際需要本文同時也提出了使用片外SDRAM器件對其存儲能力進(jìn)行擴(kuò)展的設(shè)計方法。

  2 串口收發(fā)接口設(shè)計

  2.1串口收發(fā)接口硬件設(shè)計

  嵌入式微處理器PicoBlaze本身并不具備串行接口,因此必須在FPGA中設(shè)計串口接收和發(fā)送模塊并通過總線結(jié)構(gòu)與Picoblaze連接。

  串口接收和發(fā)送模塊的設(shè)計可采用成熟的IP核。實(shí)際設(shè)計中采用了XLINX的串口收發(fā)IP核,其特點(diǎn)是串口波特率,符號規(guī)則都可以靈活地定制,同時具有16字節(jié)的接收FIFO和16字節(jié)的發(fā)送FIFO。串口收發(fā)IP核的功能、原理見參考文獻(xiàn)[2]。

  使用Picoblaze和串口收發(fā)IP核構(gòu)成的串口收發(fā)系統(tǒng)結(jié)構(gòu)見圖1。

  

使用Picoblaze和串口收發(fā)IP核構(gòu)成的串口收發(fā)系統(tǒng)結(jié)構(gòu)

  在設(shè)計中,發(fā)送模塊、接收模塊和標(biāo)志寄存器分別有不同的地址,Picoblaze通過地址端口對串口收發(fā)模塊進(jìn)行訪問。設(shè)計中的標(biāo)志寄存器,可用于指示發(fā)送模塊和接收模塊中FIFO的狀態(tài),Picoblaze通過查詢標(biāo)志寄存器來完成對串口數(shù)據(jù)的收發(fā)控制。

{{分頁}}

  2.2串口收發(fā)接口軟件設(shè)計

  串口發(fā)送、接收子程序

  Picoblaze通過對標(biāo)志寄存器的查詢,根據(jù)FIFO的狀態(tài)進(jìn)行操作。串口發(fā)送和接收子程序流程見圖2。

  

串口發(fā)送和接收子程序流程

  Picoblaze的編程,類似于匯編語言。

  串口發(fā)送子程序代碼如下:

  (1)串口接收子程序

  receive:

  INPUT s0,uartrxflag ;查詢接收FIFO是否非空

  AND s0,01

  AND s0,s0

  JUMP Z,receive ;若FIFO為空時繼續(xù)查詢

  INPUT rxdata,uartrx ;若FIFO非空時讀取數(shù)據(jù)

  RETURN

  (2)串口接收子程序

  translate:

  INPUT s0,uarttxflag ;查詢發(fā)送FIFO是否為空

  AND s0,01

  AND s0,s0

  JUMP NZ,translate ;若發(fā)送FIFO非空時繼續(xù)查詢

  OUTPUTtxdata,uarttx ;若發(fā)送FIFO為空時寫入數(shù)據(jù)

  RETURN

{{分頁}}

  協(xié)議處理子程序

  本文應(yīng)用中的串口通信,采用應(yīng)答機(jī)制,數(shù)據(jù)具有一定的幀結(jié)構(gòu),Picoblaze需要對命令幀進(jìn)行拆包處理,并根據(jù)幀的內(nèi)容進(jìn)行相應(yīng)的操作,然后發(fā)送響應(yīng)幀。

  表1 通信數(shù)據(jù)的命令幀結(jié)構(gòu)

  

通信數(shù)據(jù)的命令幀結(jié)構(gòu)

  表2 通信數(shù)據(jù)的響應(yīng)幀結(jié)構(gòu)

  

通信數(shù)據(jù)的響應(yīng)幀結(jié)構(gòu)

  根據(jù)幀格式,Picoblaze對串口數(shù)據(jù)的處理流程見圖3。

  

根據(jù)幀格式

  以上的Picoblaze程序流程所處理的數(shù)據(jù)幀結(jié)構(gòu)是較為簡單的,當(dāng)需要處理復(fù)雜的通信協(xié)議時可以考慮采用多個Picoblaze并行處理。

{{分頁}}

  3 存儲器接口設(shè)計

  Picoblaze的優(yōu)點(diǎn)是資源占用少,使用靈活,但可尋址的地址空間最多為256字節(jié),無法滿足對大量通信數(shù)據(jù)進(jìn)行存儲的需要。因此本文中采用了SDRAM器件來對Picoblaze的存儲能力進(jìn)行擴(kuò)展。

  SDRAM器件的管腳分為控制信號、地址和數(shù)據(jù)三類。通常一個SDRAM中包含幾個BANK,每個BANK的存儲單元是按行和列尋址的。SDRAM的具體特性見參考文獻(xiàn)[3]。

  SDRAM在使用時需要專用的控制器來產(chǎn)生滿足SDRAM所需的信號。FPGA中SDRAM控制器也有多種IP核可以選用。出于對設(shè)計通用性的考慮,本文中采用了一款A(yù)ltera提供的SDRAM控制器IP核,并增加了必要的設(shè)計以滿足與Picoblaze的接口要求。SDRAM控制器IP核的功能、原理見參考文獻(xiàn)[4]。

  對Picoblaze與SDRAM控制器的接口設(shè)計有以下幾個出發(fā)點(diǎn):

  總線匹配

  Picoblaze為8位處理器,數(shù)據(jù)線僅8bit,而SDRAM控制器總線寬度與SDRAM相同,可以為8、16或32bit。因此對于SDRAM控制器的數(shù)據(jù)Picoblaze必須以字節(jié)為單位進(jìn)行處理。

  地址控制

  Picoblaze地址線僅8位,無法直接對SDRAM進(jìn)行尋址。因此Picoblaze對SDRAM的尋址可借鑒先入先出存儲器FIFO的設(shè)計,即設(shè)計專門的地址計數(shù)器,通過地址計數(shù)器實(shí)現(xiàn)對SDRAM的尋址。

  時序匹配

  Picoblaze的運(yùn)行速度不超過40MHz,而SDRAM的工作速度通常大于100MHz。因此為了滿足SDRAM的時序要求,要增加必要的緩沖機(jī)制。

  3.1存儲器接口硬件設(shè)計

  Picoblaze與SDRAM存儲器接口的硬件原理框圖見圖4。

  

Picoblaze與SDRAM存儲器接口的硬件原理框圖

  控制狀態(tài)機(jī)控制的地址計數(shù)器為SDRAM控制器提供地址,同時控制狀態(tài)機(jī)還控制輸入數(shù)據(jù)緩沖區(qū)和輸出數(shù)據(jù)緩沖區(qū),并且根據(jù)Picoblaze的地址端口數(shù)據(jù)和讀/寫使能信號產(chǎn)生SDRAM控制器的命令字。

{{分頁}}

  (1)SDRAM初始化

  每次加電或復(fù)位后控制狀

  態(tài)機(jī)執(zhí)行對SDRAM控制器的初始化操作,設(shè)置SDRAM的時間參數(shù)和刷新周期等。

  (2)數(shù)據(jù)寫入SDRAM

  輸出數(shù)據(jù)緩沖區(qū)由16



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉