表面橫波生物傳感器的靈敏度分析
1 引言
本文引用地址:http://butianyuan.cn/article/79146.htm近年來在生物檢測研究方面,聲表面波傳感器因具有體積小、重量輕、性能穩(wěn)定、價格便宜等優(yōu)點(diǎn)受到廣泛關(guān)注。在傳感器中,已經(jīng)報道過的用于生物化學(xué)檢測的壓電傳感器有石英晶體微天平、體剪切波、柔順板波、瑞利波、表面橫波、洛夫波傳感器。其中,石英晶體微天平和體剪切波型傳感器靈敏度不高,柔順板波型傳感器加工困難;瑞利波傳感器由于存在垂直于晶體表面的法向位移分量,導(dǎo)致聲波能量向鄰近的液體輻射,損耗大;只具有水平剪切位移分量的表面橫波和洛夫波常用于生物化學(xué)檢測,而表面橫波具有強(qiáng)聲波束縛能力優(yōu)點(diǎn),而強(qiáng)的聲波束縛能力意味著高的靈敏度。對于表面橫波傳感器,柵陣的金屬材料種類和厚度是決定器件靈敏度的重要因素。本文將推導(dǎo)這些因素對表面橫波傳感器靈敏度的影響,并進(jìn)行相關(guān)分析。
2 基本理論
本文分析對象STW傳感器中柵陣部分對微小質(zhì)量負(fù)載的敏感度,其傳感器結(jié)構(gòu)如圖1所示,包括輸入輸出換能器(IDT)和中間的柵陣。本文分析基于AT切割石英材料基片,當(dāng)兩換能器中間沒有柵陣束縛時,聲波的工作模式是SH型淺體聲波(sur-face skimming bulk waves,SSBW),若在聲波的傳播路徑上放置柵陣,淺體聲波由于被柵陣束縛而在晶體表面?zhèn)鞑?,此時淺體聲波轉(zhuǎn)化為表面橫波。
與淺體聲波一樣,表面橫波也是SH型聲表面波,只有平行于晶體表面單一的質(zhì)點(diǎn)振動方向。因此可以假定表面橫波在晶體表面沿著Z方向傳播,質(zhì)點(diǎn)在X方向振動??死锼雇蟹蚍匠碳熬w表面的邊界條件可表示為
式中:c55,c56和c66表示基片材料的彈性剛度系數(shù);ρ為基片材料的密度;Tiy和Tsiy(i=1,2,3)則分別表示柵陣和基片的應(yīng)力;vx為質(zhì)點(diǎn)振動速度。根據(jù)弗洛蓋定理(Floquet theorem),將方程的解vx表示為一系列空間諧波的疊加。在此只取0階和-1階,忽略其他階次。
式中:an,αn,βn分別表示第n次諧波的振幅、衰減系數(shù)和傳播系數(shù)。將vx表達(dá)式(3)代入式(1)和(2),可求得表達(dá)式中的參數(shù)。計算出質(zhì)點(diǎn)振動速度后,基于Auld微擾理論可以求解傳感器的靈敏度Sβ。對于只有X方向振動位移的表面橫波,靈敏度可表示為
式中:ρ′,μ′,vn分別為柵陣材料密度、拉梅系數(shù)和聲波相速度;Pn為表面橫波的聲能量密度
據(jù)式(4),將傳感器的設(shè)計參數(shù)代入可求得Sβ。由Sβ的表達(dá)式可知,Sβ是有關(guān)聲波工作頻率、基片材料參數(shù)和柵陣結(jié)構(gòu)與材料的函數(shù)。通常STW傳感器的研制是基于給定的工作頻率和基片材料,此時柵陣的參數(shù)設(shè)計(柵陣材料、厚度)決定Sβ。
3 計算實例
根據(jù)式(2)推導(dǎo),以AT切割石英基片的STW傳感器為例進(jìn)行靈敏度分析。柵陣周期λ為20μm,金屬化比為0.5,根據(jù)式(1)~(4)進(jìn)行計算。當(dāng)金屬材料為鋁,相對膜厚分別取0.5%,1%,1.5%,2%時,傳感器靈敏度隨著頻率的變化結(jié)果如圖2所示。橫坐標(biāo)是對阻帶中心頻率歸一化后的頻率,從圖中可以看出,在相同的工作頻率下,厚度增加,靈敏度也隨之升高。另外,當(dāng)歸一化頻率接近1時,靈敏度迅速升高。這是由于當(dāng)激發(fā)頻率接近阻帶邊緣時,柵陣對聲波的束縛能力增強(qiáng),越來越多的聲波能量集中在晶體表面。如果阻帶邊緣的歸一化頻率點(diǎn)0.97為觀察點(diǎn),對比計算不同柵陣材料金、銀和鋁的靈敏度。其計算結(jié)果如圖3所示,其傳感器靈敏度隨厚度的增加而增加,在同一厚度時,金柵陣的靈敏度大于銀的2倍,遠(yuǎn)遠(yuǎn)高于鋁。
4 結(jié)論
綜上分析,對于STW傳感器,柵陣厚度的增加有利于靈敏度的提高,柵陣厚度越大,靈敏度越高。但是在同一工作頻率下柵陣厚度的增加同時引起損耗的變化,在實際器件設(shè)計時,應(yīng)當(dāng)同時考慮這兩個因素,選擇一個最佳厚度。在柵陣厚度值確定時,IDT的激發(fā)頻率接近阻帶邊緣頻率時能獲得較大的靈敏度。對于柵陣材料的選擇,由以上的分析可知,金獲得靈敏度最大,大于銀的2倍,遠(yuǎn)遠(yuǎn)高于鋁。
評論