新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 基于高性能多DSP互連技術(shù)

基于高性能多DSP互連技術(shù)

作者: 時間:2010-03-05 來源:網(wǎng)絡(luò) 收藏

 由于現(xiàn)代數(shù)字信號處理器(dsp)設(shè)計、半導(dǎo)體工藝、并行處理和互連與傳輸的進(jìn)步,現(xiàn)代dsp的處理能力得到極大發(fā)展。但在移動通信、雷達(dá)信號處理和實時圖像處理等復(fù)雜電子系統(tǒng)中,單片dsp的性能仍可能無法滿足需求,通常需要使用多片dsp構(gòu)成并行信號處理系統(tǒng)。

本文引用地址:http://butianyuan.cn/article/152056.htm

  在多dsp系統(tǒng)中,互連連接dsp、接口及其他處理器,一起構(gòu)成系統(tǒng)的靜態(tài)體系結(jié)構(gòu),是數(shù)據(jù)傳輸?shù)闹虚g介質(zhì)的總和。互連傳輸代表計算任務(wù)、中間數(shù)據(jù)、結(jié)果或狀態(tài)控制信息的數(shù)據(jù)流,使接口與dsp中的算法模塊通過數(shù)據(jù)流動態(tài)地連接起來,整合成分工協(xié)作的有機(jī)整體。

  已經(jīng)有一些對多dsp并行系統(tǒng)互連技術(shù)的綜述[1][2] [3][4][5][6],但還不夠全面而且沒有反映dsp互連技術(shù)的最新進(jìn)展。因此,本文以世界主流公司的典型dsp產(chǎn)品為例,全面總結(jié)概括高性能dsp的互連接口技術(shù)及其發(fā)展,對其互連特性進(jìn)行總結(jié)和歸納分類,在此基礎(chǔ)上全面總結(jié)給出并行信號處理系統(tǒng)中多dsp互連設(shè)計的總體設(shè)計考慮和實際經(jīng)驗。

  高性能dsp互連接口技術(shù)及其發(fā)展

  多dsp系統(tǒng)的互連以dsp自身接口為基礎(chǔ),下面以TI、ADI和Freescale三家公司的高性能dsp為例系統(tǒng)概括現(xiàn)有的dsp互連接口,見表1。

  現(xiàn)有dsp的互連接口在物理層和傳輸控制上的特性是選擇使用互連技術(shù)的基礎(chǔ),表2是對表1中所有的dsp互連接口的互連特性的總結(jié)。

  表1 主流dsp公司典型高性能dsp的互連接口

  可以看出,在越來越高的傳輸速率需求的推動下,高性能dsp互連接口在物理層技術(shù)的主要發(fā)展趨勢是:從高電壓擺幅→低電壓擺幅,從單端信號→差分信號;從并行總線→串行信號線;從收發(fā)異步→收發(fā)外同步→源同步→串行碼流中嵌入時鐘的串行器/解串行器(SerDes);從半雙工→全雙工;從多點分時共享總線→點-點的專用互連;最終使接口傳輸速率從幾十Mbps發(fā)展到目前的10Gbps。

  數(shù)據(jù)的串行化意味著數(shù)據(jù)必須以分組方式傳輸。而由于信號完整性問題,高速串行差分線一般不允許多點負(fù)載,因此SerDes的互連一般是點到點的直接互連。當(dāng)dsp數(shù)量較少時,可以采用dsp間兩兩的直接互連;當(dāng)dsp數(shù)量較多時,須要采用中間dsp或用于數(shù)據(jù)傳輸?shù)闹虚g器件―交換機(jī)。

  因此,物理層技術(shù)的發(fā)展推動著高性能dsp的主要互連技術(shù)從多點并行總線轉(zhuǎn)向高速串行直連和分組傳輸交換。例如TI在2008年10月發(fā)布的3核dsp TMS320C6474、Freescale在2008年11月發(fā)布的6核dsp MSC8156,都已經(jīng)取消傳統(tǒng)意義上的數(shù)據(jù)、地址和控制三總線接口而代之以sRIO、GE之類的標(biāo)準(zhǔn)分組交換網(wǎng)絡(luò)接口以及AIF這樣的高速直連接口。

  根據(jù)傳輸特性對互連技術(shù)的分類

  互連的目的滿足接口及算法鏈路的數(shù)據(jù)傳輸需要,因此互連特性往往與傳輸特性緊密相關(guān)。各種互連技術(shù)雖各有不同,但可以根據(jù)互連與傳輸?shù)墓残赃M(jìn)行統(tǒng)一分類,有助于理解并選擇合適的互連技術(shù)。表3是根據(jù)互連與傳輸?shù)奶匦詫ΜF(xiàn)有主要dsp互連技術(shù)的分類總結(jié)。圖1~圖4是對典型互連技術(shù)實例的圖示。

  表3 互連與傳輸技術(shù)的分類總結(jié)

  對表3補充說明如下:多點總線為多dsp共享并分時占用,不能多數(shù)據(jù)流并發(fā)傳輸。多點主從總線可能有主總線的橋接轉(zhuǎn)換,例如PCI-HPI的PCI2040(TI)、PCI-Local總線的PCI9054(PLX)。傳統(tǒng)互連中的數(shù)據(jù)傳輸過程一般都需要源、中間或目的處理器的顯性或隱性(例如TDM中的時隙分配)地直接參與。而交換機(jī)的網(wǎng)絡(luò)互連則一般不需要。間接傳輸中的中介器件、dsp或交換機(jī)可以根據(jù)需要級聯(lián)。接口轉(zhuǎn)換橋方式連接標(biāo)準(zhǔn)網(wǎng)絡(luò)的實例有:專用于ADI公司SHARC及TigerSHARC的SharcFin和FINe(Bittware)、通用的TSI620(Tundra)。高端FPGA由于其豐富的接口、對幾乎所有互連標(biāo)準(zhǔn)的有效支持、使用的靈活性和高性能的計算處理能力,也會在多dsp的互連中發(fā)揮重要作用。

  在2003年RapidIO成為ISO/IEC 18372標(biāo)準(zhǔn)之前,還沒有規(guī)范的多dsp互連網(wǎng)絡(luò)標(biāo)準(zhǔn),各廠商推出了多種非標(biāo)準(zhǔn)dsp互連網(wǎng)絡(luò)、接口和交換芯片,例如:Solano(Spectrum Signal)、StarFabric(StarGen)、FPDP/sFPDP(ICS/VITA)、RaceWay(Mercury)、 SKYChannel(SKY Computer)。RapidIO是在這些技術(shù)的基礎(chǔ)上發(fā)展起來的,特別針對高性能dsp或嵌入式系統(tǒng)互連優(yōu)化,其產(chǎn)業(yè)鏈已經(jīng)基本成熟,并開始逐步取代這些非標(biāo)準(zhǔn)互連技術(shù)。

  圖1 典型直接互連:鏈?zhǔn)健⑿切?、陣?/p>


  圖2 典型多點總線直接互連:對等總線、主從總線

  圖3 典型非網(wǎng)絡(luò)間接互連:存儲器中介(雙口、FIFO、共享)、FPGA


上一頁 1 2 下一頁

關(guān)鍵詞: 技術(shù) DSP 高性能 基于

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉