IC智能卡失效機理分析
此外,伴隨壓痕作用,芯片常發(fā)生破片現(xiàn)象,即在壓痕的周圍有部分材料呈碎屑狀。頂針作用時,在壓痕表面下的形變帶會有橫向裂紋的產(chǎn)生,壓痕作用消失后,橫向裂紋會發(fā)生增殖直至樣品表面,導致破片的產(chǎn)生。一般情況下,壓力越大,破片現(xiàn)象越嚴重。
當頂針作用在芯片背面的滑移過程時,頂針端部受到垂直載荷成比例的摩擦阻力作用,使得接觸圓的張應力隨之增高。同時頂針滑過芯片,會在其背面留下條帶狀劃痕,有可能產(chǎn)生細微碎屑,楔入硅襯底材料形成微裂紋,極大地影響了芯片的強度。
對開封后的IC卡芯片背面進行OM觀察,發(fā)現(xiàn)約大部分碎裂芯片的裂紋處或其附近都存在頂針劃痕,多為直線帶有彎鉤的形狀,且裂紋在劃痕處均有不同程度的彎折。劃痕尺寸較大,一般長數(shù)十μm,寬大于10μm,且有一定深度,約為幾μm(圖6為20個樣品劃痕形狀、大小統(tǒng)計數(shù)據(jù)所得示意圖)。
在特定接觸半徑下,芯片表面接觸圓外的張應力與離接觸中心的徑向距離間滿足σr=σm(a/r)2,隨離接觸中心的徑向距離r的增大σr下降。因此,在離頂針作用點一定范圍內,芯片表面仍存在張應力表面層,為裂紋產(chǎn)生及擴展提供了非常有利的條件。本文引用地址:http://butianyuan.cn/article/155061.htm
圖6 頂針劃痕示意圖
IC卡成型工藝中,由于制作工藝因素,模塊厚度、卡基凹槽幾何形狀間存在一定差異,不能完全匹配,從而會引發(fā)較在成倍應力,加上使用過程中的不同材料的熱脹冷縮或者外力扭曲,也容易引起芯片碎裂。
圖7 鍵合引線工藝中的失效機理
圖7 鍵合引線工藝中的失效機理
2 鍵合相關失效
IC卡組裝工藝中,因鍵合引起的失效也是影響IC卡質量和可靠性的重要因素之一。鍵合失效主要表現(xiàn)為IC卡電學特征上的不連續(xù),如開路同時伴有短路、漏電等現(xiàn)象,或出現(xiàn)“輸入高”或者“輸入低”的失效。圖7給出了與鍵合相關的諸多失效機理6。
IC卡組裝工藝中,因鍵合引起的失效也是影響IC卡質量和可靠性的重要因素之一。鍵合失效主要表現(xiàn)為IC卡電學特征上的不連續(xù),如開路同時伴有短路、漏電等現(xiàn)象,或出現(xiàn)“輸入高”或者“輸入低”的失效。圖7給出了與鍵合相關的諸多失效機理6。
圖8 鍵合相關失效
水汽的侵蝕會引發(fā)電解效應,很大程度上加速金屬電遷移。焊盤基底諸如C等雜質沾污則會導致空洞的產(chǎn)生,引起焊盤隆起。圖8(c)所示為具有不連續(xù)電學特征的失效樣品。SEM,EDX(圖9)分析證明連結部位存在爆裂現(xiàn)象,且焊盤中有氯的存在。
3 注塑成型相關失效
與其他塑封IC產(chǎn)品一樣,注塑成型時的沖絲、包封材料空洞等現(xiàn)象也會引起IC卡的失效問題6。環(huán)氧塑封料在注塑成型時呈熔融狀態(tài),是有粘度的運動流體,因此具有一定的沖力,沖力作用在金絲上,使金絲產(chǎn)生偏移,極端情況下金絲被沖斷,這就是所謂的沖絲。
假設熔融塑封料為理想流體,不考慮塑封體厚度,則塑封料流動對金絲的沖力大小可表示為F=Kfηυsinθ,其中F為單位面積的沖力,Kf為常數(shù),η為熔融塑封料的粘度,υ為流動速度,θ為流動方向與金絲的夾角。由公式可知,塑封料粘度越大,流速越快,θ角度越大,產(chǎn)生的沖力就越大,沖絲程度也越嚴重,會引起短路或者引線連結處脫落,導致IC卡失效。
此外,注塑過程中留下的氣泡、小孔以及麻點(表面多孔)在后續(xù)工藝后會擴散、增大,易造成潮氣以及其他有害雜質的侵入,加速IMC的形成,引起焊盤腐蝕。
4 靜電放電引起的失效
靜電放電(ESD)是直接接觸或靜電場感應引起的兩個不同靜電勢的物體之間靜電荷的傳輸,常使芯片電路發(fā)生來流熔化、電荷注入、氧化層損傷和薄膜燒毀等諸多失效。
此外,注塑過程中留下的氣泡、小孔以及麻點(表面多孔)在后續(xù)工藝后會擴散、增大,易造成潮氣以及其他有害雜質的侵入,加速IMC的形成,引起焊盤腐蝕。
4 靜電放電引起的失效
靜電放電(ESD)是直接接觸或靜電場感應引起的兩個不同靜電勢的物體之間靜電荷的傳輸,常使芯片電路發(fā)生來流熔化、電荷注入、氧化層損傷和薄膜燒毀等諸多失效。
防護ESD的一種有效方法,即設計特定的保護電路。圖10即為一種基于CMOS工藝的IC卡芯片ESD保護電路7。該結構包括兩個部分:主保護電路和箝拉電路。在ESD發(fā)生時,箝拉電路首先導通,使輸入端柵上的電壓箝拉在低于柵擊穿的電壓。中間的串聯(lián)電阻起限流作用,更重要的是使PAD上的電壓能觸發(fā)主保護電路的開啟,使ESD能量通過主保護電路得到釋放。
此外,通過改善生產(chǎn)工藝、控制使用環(huán)境等也能有效減少ESD的發(fā)生。傳統(tǒng)的IC卡采用引線鍵合條帶技術,芯片碎裂是其最主要的失效機理。通過改進研磨、劃片等工藝技術,提高組裝(特別是裝片時的頂針過程)、鍵合、模塊鑲嵌等工藝質量,可大大降低芯片碎裂率,提高IC卡的成品率和可靠性。
此外,與引線鍵合、注模相關的失效,如虛焊、脫焊、引線過松、過緊、沖絲或由于外界潮氣的侵入和電學因素的共同作用而形成IMC等都將降低IC卡的可靠性,引起IC卡失效,可通過改進相應的工藝技術來減少此類失效的發(fā)生。ESD亦是IC卡失效的重要機理之一,嚴重時將導致Al線/多晶硅電阻燒穿、晶體管柵氧化層損壞或者結損傷,對此可通過設計專門的ESD保護電路徠提升IC卡芯片抗ESD的能力,以提升IC卡的可靠性。
此外,與引線鍵合、注模相關的失效,如虛焊、脫焊、引線過松、過緊、沖絲或由于外界潮氣的侵入和電學因素的共同作用而形成IMC等都將降低IC卡的可靠性,引起IC卡失效,可通過改進相應的工藝技術來減少此類失效的發(fā)生。ESD亦是IC卡失效的重要機理之一,嚴重時將導致Al線/多晶硅電阻燒穿、晶體管柵氧化層損壞或者結損傷,對此可通過設計專門的ESD保護電路徠提升IC卡芯片抗ESD的能力,以提升IC卡的可靠性。
評論