MEMS技術(shù)
MEMS本質(zhì)上是一種把微型機(jī)械組件(如傳感器、制動(dòng)器等)與電子電路集成在同一顆芯片上的半導(dǎo)體技術(shù)。一般芯片只是利用了硅半導(dǎo)體的電氣特性,而 MEMS 則利用了芯片的電氣和機(jī)械兩種特性。
本文引用地址:http://butianyuan.cn/article/161919.htm三維微電子機(jī)械系統(tǒng)(3D-MEMS),是將硅加工成三維結(jié)構(gòu),其封裝和觸點(diǎn)便于安裝和裝配,用這種技術(shù)制作的傳感器具有極好的精度、極小的尺寸和極低的功耗。這種傳感器僅由一小片硅就能制作出來(lái),并能測(cè)量三個(gè)互相垂直方向的加速度。例如為承受強(qiáng)烈震動(dòng)的加速度傳感器和高分辨率的高度計(jì)提供合適的機(jī)械阻尼。這類傳感器的功率消耗非常低,這使它們?cè)陔姵仳?qū)動(dòng)設(shè)備中具有不可比擬的優(yōu)越性。
在 MEMS 傳感器芯片內(nèi),三軸(X、Y、Z)上的運(yùn)動(dòng)或傾斜會(huì)引起活動(dòng)硅結(jié)構(gòu)的少量位移,造成活動(dòng)和固定元器件之間的電容發(fā)生變化。在同一封裝上的接口芯片把微小的電容變化轉(zhuǎn)變成與運(yùn)動(dòng)成比例的校準(zhǔn)模擬電壓。通常的模擬量采樣的方式有兩種:靜電電容式和壓電電阻式。前者在低功耗方面更具優(yōu)勢(shì),消耗電流更低。
MEMS與CMOS制程技術(shù)的整合,已成功帶動(dòng)組件產(chǎn)品在消費(fèi)電子應(yīng)用綻放光芒,包括Intel、Samsung、TI、TSMC等半導(dǎo)體領(lǐng)導(dǎo)大廠皆看好CMOS MEMS發(fā)展,而相繼投入相關(guān)技術(shù)的研究開(kāi)發(fā)。而CMOS MEMS組件能否進(jìn)一步降低產(chǎn)品開(kāi)發(fā)成本,3D MEMS封裝技術(shù)扮演了關(guān)鍵性的角色。
3D封裝技術(shù)除了可解決技術(shù)發(fā)展瓶頸,在異質(zhì)整合特性下,也可進(jìn)一步整合模擬RF、數(shù)字Logic、Memory、Sensor、混合訊號(hào)、MEMS等各種組件,且此整合性組件不但可縮短訊號(hào)傳輸距離、減少電力損耗,也能大幅增加訊號(hào)傳遞速度。此外,由于采取3D立體堆棧方式,故在Form Factor方面,也能在固定單位體積下達(dá)到最高的芯片容量。
隨著MEMS技術(shù)在消費(fèi)電子應(yīng)用的快速崛起,及半導(dǎo)體制造接近極限,透過(guò)TSV技術(shù)整合MEMS與CMOS制程,形成IC的3D化也逐漸受到矚目。由于3D MEMS隱含了異質(zhì)整合特性,具備低成本、小尺寸、多功能、高效能等多重優(yōu)勢(shì),因此可望在未來(lái)掀起另一波技術(shù)應(yīng)用革命,并為CMOS MEMS的發(fā)展帶來(lái)更大商機(jī)。
在看好相關(guān)產(chǎn)品技術(shù)發(fā)展前景下,業(yè)界已開(kāi)始加速布局CMOS MEMS+3D MEMS Packaging解決方案。由于以TSV方式將Chip堆棧成3D IC的發(fā)展備受看好,也可望帶動(dòng)3D TSV Wafer出貨數(shù)的快速成長(zhǎng),以組件類別來(lái)區(qū)分,目前以CIS(CMOS Image Sensor)采用TSV與IC 3D化的速度最快,第二階段預(yù)計(jì)將由內(nèi)存(含F(xiàn)lash、SRAM、DRAM)扮演承接角色。3D MEMS可望在2011年興起,并在往后3年穩(wěn)定邁向商品化。
MEMS產(chǎn)品大多以150mm~200mm的8寸晶圓生產(chǎn),在未來(lái)6年有望逐步轉(zhuǎn)進(jìn)300mm的12寸廠生產(chǎn),以便做最佳化的產(chǎn)能利用。
MEMS:對(duì)消費(fèi)類電子產(chǎn)生重大影響的技術(shù)
制造商正在不斷完善手持式裝置,提供體積更小而功能更多的產(chǎn)品。但矛盾之處在于,隨著技術(shù)的改進(jìn),價(jià)格往往也會(huì)出現(xiàn)飆升,所以這就導(dǎo)致一個(gè)問(wèn)題:制造商不得不面對(duì)相互矛盾的要求——在讓產(chǎn)品功能超群的同時(shí)降低其成本。
解決這一難題的方法之一是采用微機(jī)械加工技術(shù),更流行的說(shuō)法是MEMS,它使得制造商能將一件產(chǎn)品的所有功能集成到單個(gè)芯片上。MEMS對(duì)消費(fèi)電子產(chǎn)品的終極影響不僅包括成本的降低、而且也包括在不犧牲性能的情況下實(shí)現(xiàn)尺寸和重量的減小。事實(shí)上,大多數(shù)消費(fèi)類電子產(chǎn)品所用MEMS元件的性能比已經(jīng)出現(xiàn)的同類技術(shù)大有提高。雖然MEMS過(guò)去只限于汽車、工業(yè)和醫(yī)療應(yīng)用,但據(jù)調(diào)查公司估計(jì):“MEMS消費(fèi)類電子產(chǎn)品的銷售額將在2005年前達(dá)到15億美元”。
手持式設(shè)備制造商正在逐漸意識(shí)到MEMS的價(jià)值以及這種技術(shù)所帶來(lái)的好處——大批量、低成本、小尺寸,而且開(kāi)始轉(zhuǎn)向成功的MEMS公司,其所實(shí)現(xiàn)的成本削減幅度之大,將影響整個(gè)消費(fèi)類電子世界,而不僅是高端裝置。
圖1 人跑步/走路時(shí)的側(cè)向z軸運(yùn)動(dòng)
跟上發(fā)展步伐
正在日益流行的MEMS應(yīng)用是步程計(jì),它用于測(cè)量人行走時(shí)的速度或距離。將在z軸方向上的機(jī)械平移運(yùn)動(dòng)轉(zhuǎn)換為電脈沖(圖1)是MEMS器件的作用所在。這些脈沖饋入一個(gè)峰值檢測(cè)器電路,該電路隨后在每個(gè)脈沖作用下觸發(fā)一次計(jì)數(shù)。精心設(shè)計(jì)峰值檢測(cè)算法則能根據(jù)所選用的加速度計(jì)情況來(lái)獲得最優(yōu)的測(cè)量效果。
如果步程計(jì)安裝到被測(cè)人的足部,當(dāng)該人跑步時(shí),則步程計(jì)就會(huì)定期受到極大的沖擊作用。如果產(chǎn)品使用加速度計(jì)的話,如此之高的沖擊指標(biāo)會(huì)大大限制產(chǎn)品的性能。例如,有些加速度計(jì)設(shè)計(jì)在過(guò)載超過(guò)一定程度時(shí)會(huì)出現(xiàn)被稱作“粘死”的現(xiàn)象,加速度計(jì)在受到很大沖擊時(shí)將出現(xiàn)飽和,即使大過(guò)載消除后仍然保持飽和輸出。為了使其擺脫這種狀態(tài),可能需要將電源極性顛倒過(guò)來(lái)。MEMSIC公司的加速度計(jì)以熱敏感原理來(lái)檢測(cè)加速度,因此沒(méi)有其它加速度計(jì)在大負(fù)載情況下出現(xiàn)的問(wèn)題,如粘死,這是因?yàn)樗鼈兏揪蜎](méi)有敏感質(zhì)量的緣故。
讓GPS更可靠
不管是在偏僻的小路上游覽還是簡(jiǎn)單的為汽車導(dǎo)航,手持式全球定位系統(tǒng)(GPS)都是一件安全、方便且理想的隨身裝備。
利用GPS接收機(jī)支持的人員和車輛定位系統(tǒng)可以確定位置,而且提供路線方面的引導(dǎo)。采用GPS系統(tǒng)時(shí),信號(hào)接收并非始終是100%可靠的,但是若有基于MEMS技術(shù)的加速度計(jì),就可以由能推算出行駛(走)距離的導(dǎo)航解算方法來(lái)彌補(bǔ)信號(hào)方面的損失。此外,在修正這些系統(tǒng)所用的3軸電子羅盤的磁偏角方面,加速度計(jì)也非常有用。加速度計(jì)可以跟蹤偏離重力方向零位基準(zhǔn)的角位移信息,獲得這些信息后,就可以修正磁偏角,這樣即使裝置不處于水平狀態(tài),仍可以得出精確的方向讀數(shù)。
手持式GPS制造商要解決的問(wèn)題之一是如何在惡劣的天氣條件下保證裝置的性能。這些系統(tǒng)在極端溫度條件下都必須可靠而且能夠耐受強(qiáng)烈的沖擊。目前的加速度計(jì)在很多情況下尚不能承受惡劣環(huán)境下所存在的強(qiáng)沖擊影響。MEMSIC公司所設(shè)計(jì)的新產(chǎn)品則實(shí)現(xiàn)了高抗沖擊性能——5萬(wàn)g,因此其幾乎不可能失效。而大多數(shù)MEMS加速度計(jì)的沖擊過(guò)載耐受范圍是500g~2000g,常常會(huì)失效,因?yàn)槠骷o(wú)法在更加惡劣的環(huán)境中保持完好無(wú)損。
評(píng)論