適用于小功率電機(jī)驅(qū)動(dòng)系統(tǒng)的MOSFET逆變模塊
本文引用地址:http://butianyuan.cn/article/178012.htm
MOSFET逆變器的另一個(gè)優(yōu)點(diǎn)是圖4(e)所示的自舉電壓(陰極輸出電壓)。從圖4(e)可以看出,電機(jī)的工作頻率為10Hz。圖中畫出了自舉電壓和逆變器輸出電流。當(dāng)電流為正時(shí),自舉電壓VBS維持在VCC=15V附近,但當(dāng)電流為負(fù)時(shí),VBS就下降到接近10V。這是由于不同電流方向采用不同的充電機(jī)制所造成 (參見圖5)。當(dāng)輸出電流為正時(shí),電流要么流經(jīng)高壓側(cè)MOSFET,要么流經(jīng)低壓側(cè)體二極管。在這種情況下,當(dāng)?shù)蛪簜?cè)體二極管導(dǎo)通時(shí),將對(duì)自舉電容CBS充電 (參見圖5(a))。此時(shí),對(duì)CBS的充電電壓可由公式(2)表示。
Vchg = VCC + Vf - (RBS + REH) Ichg - VDbs;;;;;; (2)
其中,VDbs是跨過陰極輸出二極管的電壓。如果充電電流小,Vchg僅僅提高Vf -VDbs;該差值最多為1V,它反映如圖1(b)所示的低壓側(cè)體二極管上的壓降。但當(dāng)輸出電流為負(fù)時(shí),充電電壓將由公式(3)表示。
Vchg = VCC + Rds(on)Io - (RBS + REH) Ichg - VDbs;;;;; (3)
這里,Io為輸出電流。如果電流是負(fù)的,充電電壓Vchg將隨輸出電流大幅下降,這是低壓側(cè)MOSFET作為主用開關(guān)時(shí)MOSFET的正向壓降所致。這個(gè)自舉電壓是高壓側(cè)MOSFET的柵極驅(qū)動(dòng)電源,且僅在電流為正時(shí)有意義。當(dāng)電流為正時(shí),由于MOSFET的Vf小,自舉電壓變化不大,因而無需大的自舉電容。只需用較小的自舉電容就可維持所需的自舉電壓,這個(gè)電壓僅在電流為正時(shí)用來維持HVIC的待機(jī)電流。在過調(diào)高速電機(jī)運(yùn)行情況下,高壓側(cè)MOSFET在輸出頻率的半個(gè)周期內(nèi)全導(dǎo)通。例如,若采用單脈沖模式 (或6級(jí)階梯波模式) 的PWM進(jìn)行調(diào)制,輸出頻率為100Hz,則高壓側(cè)MOSFET的導(dǎo)通時(shí)間可持續(xù)5ms。在此期間,不可能一直對(duì)自舉電容充電,而自舉電容的自舉電壓隨HVIC待機(jī)電流的變化可按公式(4)計(jì)算。
ΔVBS =Δ tIQBS / CBS;;; (4)
這里,IQBS為HVIC的待機(jī)電流,并忽略了CBS本身的漏電流。假設(shè)最大待機(jī)電流為100mA,CBS為1mF,那么,自舉電壓在5ms內(nèi)的變化 VBS也只有0.5V。這意味著,采用1mF的陶瓷電容就足以維持這種MOSFET逆變器在整個(gè)運(yùn)行過程中所需的自舉電壓。
除了 自舉電路問題外,采用HVIC還會(huì)引起許多別的問題;尤其當(dāng)VB電平低于地電平時(shí)最為顯著。在HVIC中,高壓側(cè)柵極單元是用p-n結(jié)隔離的,而輸入信號(hào)要通過額定電壓為625V的電平漂移MOSFET傳輸?shù)礁邏簜?cè)單元。為了降低信號(hào)傳輸期間的功耗,將開關(guān)信號(hào)轉(zhuǎn)換成置位復(fù)位脈沖;該脈沖觸發(fā)對(duì)應(yīng)電平漂移MOSFET和高壓側(cè)單元中的置位復(fù)位(SR)閂鎖電路。當(dāng)VS低于 -5V時(shí),電平漂移MOSFET不能傳送觸發(fā)信號(hào)到高壓側(cè)邏輯電路。而且,若VB小于0V,VB與邏輯地之間的寄生二極管將會(huì)導(dǎo)通;這會(huì)產(chǎn)生過量的電流,從而破壞HVIC。在實(shí)際應(yīng)用中,當(dāng)負(fù)載電流非常大,或有沖擊電涌噪聲施加在VB或VS端時(shí),VB可能在很短時(shí)間內(nèi)被拉到0V以下。除了對(duì)HVIC本身造成破壞外,還會(huì)使HVIC出現(xiàn)誤操作或閂鎖現(xiàn)象。當(dāng)HVIC出現(xiàn)閂鎖時(shí),其行為將不可預(yù)測(cè),而且,即使在恢復(fù)正常狀態(tài)后,也可能被電源端之間的過量電流損壞。這類現(xiàn)象與HVIC的設(shè)計(jì)規(guī)則緊密相關(guān),在設(shè)計(jì)階段就應(yīng)排除這種隱患。當(dāng)HVIC產(chǎn)生誤操作時(shí),誤操作導(dǎo)致的非正常關(guān)斷可能中斷正常的控制動(dòng)作,但不大可能導(dǎo)致整個(gè)系統(tǒng)的破壞。然而,如果高壓側(cè)SR閂鎖電路因電涌噪聲而異常開啟,高壓側(cè)功率MOSFET將處于非控導(dǎo)通狀態(tài),且不能在輸入信號(hào)的脈沖負(fù)沿到來時(shí)復(fù)位。這種行為很可能在逆變器的某一管腳上造成短路,進(jìn)而破壞功率模塊。為了防止這種現(xiàn)象,設(shè)計(jì)模塊的HVIC時(shí),我們針對(duì)可能出現(xiàn)的工作和環(huán)境條件,將出現(xiàn)誤操作的可能性降到最低。同時(shí),當(dāng)過量的電涌或沖擊噪聲施加在器件上時(shí),電平漂移單元和SR閂鎖電路被設(shè)計(jì)成具有關(guān)斷優(yōu)先的特性。
結(jié)論
本文討論了面向小功率電機(jī)驅(qū)動(dòng)應(yīng)用的新型高集成、低噪聲MOSFET逆變模塊。該模塊專為100W無刷直流內(nèi)置電機(jī)驅(qū)動(dòng)系統(tǒng)而開發(fā)。本文還討論了該模塊所采用的封裝技術(shù)、MOSFET和HVIC,以及其應(yīng)用特點(diǎn)。
評(píng)論