新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 通過開關(guān)頻率調(diào)制來降低電源 EMI 干擾

通過開關(guān)頻率調(diào)制來降低電源 EMI 干擾

作者: 時(shí)間:2010-08-24 來源:網(wǎng)絡(luò) 收藏

  在測定 性能時(shí),您是否發(fā)現(xiàn)無論您采用何種方法濾波都依然會(huì)出現(xiàn)超出規(guī)范幾 dB 的問題呢?有一種方法或許可以幫助您達(dá)到 性能要求,或簡化您的濾波器設(shè)計(jì)。這種方法涉及了對(duì),以引入邊帶能量,并改變窄帶噪聲到寬帶的發(fā)射特征,從而有效地衰減諧波峰值。需要注意的是,總體 性能并沒有,只是被重新分布了。利用正弦,可控變量的兩個(gè)變量為 (fm) 以及您改變 (Δf) 的幅度。調(diào)制指數(shù) (Β) 為這兩個(gè)變量的比:

本文引用地址:http://butianyuan.cn/article/180562.htm

圖 1 顯示了正弦波改變調(diào)制指數(shù)產(chǎn)生的影響。當(dāng) Β=0 時(shí),沒有出現(xiàn)頻移,只有一條譜線。當(dāng) Β=1 時(shí),頻率特征開始延伸,且中心頻率分量下降了 20%。當(dāng) Β=2 時(shí),該特征將進(jìn)一步延伸,且最大頻率分量為初始狀態(tài)的 60%。頻率調(diào)制理論可以用于量化該頻譜中能量的大小。Carson 法則表明大部分能量都將被包含在 2 * (Δf + fm) 帶寬中。

圖 1 調(diào)制頻率延伸了 EMI 特征圖 2 顯示了更大的調(diào)制指數(shù),并表明 12dB 以上的峰值 EMI 性能是有可能的。

圖 2 更大的調(diào)制指數(shù)可以進(jìn)一步峰值 EMI 性能選取調(diào)制頻率和頻移是兩個(gè)很重要的方面。首先,調(diào)制頻率應(yīng)該高于 EMI 接收機(jī)帶寬,這樣接收機(jī)才不會(huì)同時(shí)對(duì)兩個(gè)邊帶進(jìn)行測量。但是,如果您選取的頻率太高,那么電源控制環(huán)路可能無法完全控制這種變化,從而帶來相同速率下的輸出電壓變化。另外,這種調(diào)制還會(huì)引起電源中出現(xiàn)可聞噪聲。因此,我們選取的調(diào)制頻率一般不能高出接收機(jī)帶寬太多,但要大于可聞噪聲范圍。很顯然,從圖 2 我們可以看出,較大地改變工作頻率更為可取。然而,這樣會(huì)影響到電源設(shè)計(jì),意識(shí)到這一點(diǎn)非常重要。也就是說,為最低工作頻率選擇磁性元件。此外,輸出電容還需要處理更低頻率運(yùn)行帶來的更大的紋波電流。圖 3 對(duì)有頻率調(diào)制和無頻率調(diào)制的 EMI 性能測量值進(jìn)行了對(duì)比。此時(shí)的調(diào)制指數(shù)為 4,正如我們預(yù)料的那樣,基頻下 EMI 性能大約降低了 8dB。其他方面也很重要。諧波被抹入 (smear into) 同其編號(hào)相對(duì)應(yīng)的頻帶中,即第三諧波延展至基頻的三倍。這種情況會(huì)在一些較高頻率下重復(fù),從而使噪聲底限大大高于固定頻率的情況。因此,這種方法可能并不適用于低噪聲系統(tǒng)。但是,增加設(shè)計(jì)裕度和最小化 EMI 濾波器成本,許多系統(tǒng)都已受益于這種方法。

圖 3 改變電源頻率降低了基頻但提高了噪聲底限



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉