基于FPGA的三軸伺服控制器設計與實現(xiàn)
控制模塊方面速度環(huán)節(jié)和位置環(huán)節(jié)分別采用PD和PID控制。因此在控制器設計中需要在這方面有所體現(xiàn)。由于本控制器以控制直流力矩電機為最終目的,因此在控制模塊的設計方面需要研究力矩電機的驅動及其電壓值獲取。在本控制器設計過程中需要對上述各項進行綜合控制與處理,以達到合理地控制開銷和控制精度的平衡。在三軸伺服裝置中選用PID控制算法。引入通常的PID控制算法,并考慮功率放大、位置檢測環(huán)的增益和速度環(huán)的PD控制算法,給定三軸電樞電壓。
在控制模塊的設計中速度與位置調節(jié)的是整個控制的主體,本伺服控制器完成輸入信號與輸出信號的比較,再通過位置校正、速度校正、機械諧振校正之后,校正后的信號控制PWM發(fā)生器的占空比,具有一定占空比的PWM信號控制PWM功率級,進而驅動被控對象。如此就可以得到本伺服控制器在反饋環(huán)節(jié)中所需要的力矩電機位置信息,利用該位置信息對三軸平臺實現(xiàn)高精度控制。
基于FPGA的三軸伺服控制器的通信模塊設計在硬件設計中也占有很大的比重。整體的通訊設計接口采用基于RS232的通用串口通信方式。采用這種接口方式能夠在滿足系統(tǒng)現(xiàn)場編程通信的同時滿足系統(tǒng)的遠程通信要求。該通信模塊采用一個帶有UART口的MCU,由于該MCU的數(shù)據(jù)都是立即數(shù),在運行過程中并沒有取數(shù)據(jù)操作,因此設計的流水線結構采用三級結構,分別為取指令、譯碼和指令執(zhí)行。而MCU的指令地址則由程序計數(shù)器給出。在通信模塊的設計主要考慮的是正常上位機通信的進行和遠程監(jiān)控通信的有效實施。該設計采用了雙PC設計,這樣能夠極大地減少復位時間,使上述MCU不會因為外界的干擾而錯誤地執(zhí)行指令,這樣就能提高系統(tǒng)的可靠性。
本三軸伺服控制器的硬件設計需要配合軟件才能有效運行,該控制器軟件設計的主要任務是:完成對接口的初始化;上位機能夠對獨立控制三軸的伺服控制設備進行指令控制;對于光電編碼器反饋的速度信號和位置信號進行讀取和分析處理;根據(jù)反饋的數(shù)據(jù)和外部的腔制命令完成整個控制系統(tǒng)的閉環(huán)控制。其具體的主程序控制流程圖如圖2所示。本文引用地址:http://butianyuan.cn/article/191569.htm
本控制器軟件的關鍵是PWM信號的設定與輸出,一方面要考慮外部的輸入角度,另一方面要考慮系統(tǒng)的反饋。要實現(xiàn)高精度的三軸定位,必須有一套合理的信號產(chǎn)生機制。系統(tǒng)的中斷設計也是本控制器的重要研究內(nèi)容,因為本控制器采用相對獨立的三軸控制方式,在保證各軸獨立運行的同時要兼顧到整體的運行情況,且在運行過程中一旦某一部分出現(xiàn)問題,其他所有的部分都要同時采取一定的措施解決這個問題。限于篇幅,本文并未列出該三軸伺服控制器的軟件程序。
3 性能測試
為了驗證所設計的三軸伺服控制器的有效性,對基于FPGA的控制、通信等模塊進行了基于軟件的Modelsim的仿真測試。首先進行了該控制模塊的單次運行時間,本三軸伺服控制器的單次運行的平均時間為483ns,這種結果基本滿足了該控制平臺的實時性要求。系統(tǒng)的通信功能測試主要針對控制器的在線編程和上位機遠程控制進行。以普通筆記本作為上位機,采用串口通信軟件與該控制器進行通信,完成系統(tǒng)的三個力矩電機的啟動、加速、調速、換向、制動等功能??刂破鲄?shù)的在線編程也完全能夠滿足。
在性能測試方面還進行了該控制器的調速性能測試、及時中斷性能測試、故障自動報警與處理性能測試、三軸綜合配合高精度定位測試等一系列測試。從仿真測試結果上看,所設計的基于FPGA的三軸伺服控制器基本能夠滿足該機載平臺的要求。
4 結語
以FPGA作為控制核心對某機載三軸運動平臺的伺服控制器進行設計,主要對其硬件中的控制、驅動、通信模塊進行了設計,同時給出了其軟件控制流程和部分中斷、復位等軟件程序。通過后續(xù)的仿真測試驗證了該控制器的有效性。
pid控制器相關文章:pid控制器原理
評論