新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 用于磁懸浮系統(tǒng)的新型混合功率放大器的設(shè)計

用于磁懸浮系統(tǒng)的新型混合功率放大器的設(shè)計

作者: 時間:2016-10-16 來源:網(wǎng)絡(luò) 收藏

1 引言

本文引用地址:http://www.butianyuan.cn/article/201610/307953.htm

磁懸浮技術(shù)由于其無接觸的特點,避免了物體之間的摩擦和磨損,能延長設(shè)備的使用壽命,改善設(shè)備的運行條件,因而在交通、冶金、機械、電器、材料等各個方面有著廣闊的應(yīng)用前景。功率放大器作為磁懸浮控制系統(tǒng)的重要組成部分,其作用是控制電磁鐵中電流產(chǎn)生電磁力。其性能優(yōu)劣對磁懸浮控制系統(tǒng)有著顯著的影響。

用于磁懸浮控制系統(tǒng)的功率放大器主要有線性功率放大器和開關(guān)型功率放大器,前者是指功率器件工作在放大區(qū)的功率放大器,其優(yōu)點是低噪音、結(jié)構(gòu)簡單、易于調(diào)試、對給定信號跟隨特性好,但功率消耗大,效率不高,發(fā)熱大;后者的功率器件只工作在飽和區(qū)和截止區(qū),即只有開、斷兩種狀態(tài),通過控制器調(diào)節(jié)PWM信號的占空比進而調(diào)節(jié)流過線圈的電流大小。由于功率器件上只有開關(guān)損失以及傳導損失,因此開關(guān)功放的效率很高,但由于繞組兩端電壓在若干電壓等級之間切換,會導致電流波形失真。

本文介紹的新型混合功率放大器則集合了線性功放以及開關(guān)型功放的優(yōu)點,效率高、速度快、電流脈動小、系統(tǒng)運行穩(wěn)定。

2 新型混合功率大器的原理

本文介紹的新型混合功率放大器的原理如圖1所示:

圖1 新型混合功率放大器的原理

為了降低功率放大器的損耗,利用電壓環(huán)使晶體管電壓穩(wěn)定。先檢測出晶體管集電極電壓,使之與給定電壓做比較,得到的偏差信號經(jīng)過控制器,通過某種控制策略,產(chǎn)生控制信號,之后經(jīng)PWM環(huán)節(jié)得到一定占空比的脈沖信號,改變電源電壓U,使其在動態(tài)時提高功率放大器的電源電壓,提高動態(tài)響應(yīng);在穩(wěn)態(tài)時降低功率放大器的電源電壓,降低放大器自身損耗。電流環(huán)則起到控制線圈電流的作用。給定值來自位置傳感器,與反饋電流比較后,產(chǎn)生的偏差信號被送入控制器,得到晶體管的控制信號,從而控制線圈電流,進而控制電磁鐵的電磁力。

當系統(tǒng)處于穩(wěn)態(tài)時,線圈中電流變化小,可忽略電感電壓,此時電源電壓為:

U = iRl+ uT

其中i為線圈電流,Rl為線圈電阻,uT為功率管電壓。

當系統(tǒng)處于動態(tài)時,位置傳感器檢測到位置的變化而引起i r的變化,通過與 if比較,從而使晶體管電壓uT變化,從而使線圈中的電流跟隨給定值變化。而的變化將通過電壓環(huán)調(diào)節(jié)功率放大器電源電壓,使其保持恒定。此時的電源電壓為:

U = iRi+ uT+ Ldi/dt

這種混合型功率放大器采用斬波器控制線性放大器電源電壓,而放大器的主體采用線性功放,既保留了線性功放噪聲低、穩(wěn)定性好的優(yōu)點,又克服了其損耗大的不足,將改善整個磁懸浮控制系統(tǒng)的性能。

3 控制電路拓撲

磁懸浮軸承上應(yīng)用的繞組控制電路拓撲結(jié)構(gòu)主要以橋式電路為主,而橋式電路又分為半橋式電路和全橋式電路。半橋式電路原理如圖2所示。

圖2 半橋式電路原理

圖3 全橋式電路原理

圖4 基于Multisim的混合功率放大器仿真電路

圖5 混合功率放大器的階躍響應(yīng)

圖6 混合功率放大器跟蹤特性仿真波形

功率管VT1、VT2同時導通,電路處于充電狀態(tài),線圈兩端電壓為+U,電流增大;VT1、VT2一通一斷,則電路處于續(xù)流狀態(tài);VT1、VT2同時關(guān)斷,電流經(jīng)過VD1、VD2回饋電源。

由電路的運行狀態(tài)可知,半橋式控制電路中,經(jīng)過線圈的電流是單向的,這顯然是不適合應(yīng)用于磁懸浮控制系統(tǒng)的。全橋式電路原理如圖3所示。

T1、T2、T3、T4分別為四個功率管,其中T1、T3工作在開關(guān)狀態(tài),T2、T4工作在放大狀態(tài)。T2、T3導通,T1、T4截止時,電流正向流過線圈,電流大小通過T2控制;當T1、T4導通,T2、T3截止時,電流逆向流過線圈,電流大小通過T4控制。

四個功率管截止時,電流通過二極管進行續(xù)流。由電路的運行狀態(tài)可知,全橋式電路可以實現(xiàn)電流的雙向流動,滿足磁懸浮控制系統(tǒng)的要求。因此選擇全橋式電路拓撲結(jié)構(gòu)。

4 混合功率放大器的性能分析

系統(tǒng)的Multisim仿真電路如圖4所示,L2、C1、D1、V2構(gòu)成了BUCK變換器,電壓環(huán)控制采用了滯環(huán)控制。V2為電流傳感器,XSC1為示波器,A5、A6、A8則構(gòu)成了PID調(diào)節(jié)器。功率管集電極反饋電壓輸入電壓滯回模塊,控制模擬開關(guān)開斷,調(diào)節(jié)占空比,從而達到控制電源電壓的目的。直流電源VCC、二極管D4是為了解決BUCK電路占空比低所引起的電壓波形變差的問題。當電源電壓低于8V,由8V直流電源直接供電。

當給定信號為階躍信號時,混合功率放大器的仿真如圖5所示。其中圖(a)、(b)分別為電源電壓在300V與400V時的階躍響應(yīng),由圖可以清晰地看出,電流的跟蹤速度與放大器的電源電壓有著密切的關(guān)系,電壓越高,響應(yīng)速度越快。

由于復雜的電流波形可以通過不同頻率的正弦波疊加而成,因此,將給定的電流信號設(shè)定為正弦信號,頻率值為1500Hz,電源電壓設(shè)為300V。系統(tǒng)的仿真波形如圖6所示。A曲線為給定值曲線,B曲線為電流傳感器測得的實際值曲線,由此可知,實際電流值很好地跟隨了給定電流的變化。

結(jié)束語

對新型混合功率放大器的原理、拓撲進行了介紹,并通過Multisim仿真,對其特性進行了分析。結(jié)果表明,新型混合功率放大器效率高、響應(yīng)速度快,能夠滿足磁懸浮控制系統(tǒng)的要求。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉