基于51單片機的電動車蹺蹺板設(shè)計
2.3 電動機及其驅(qū)動模塊的選擇
根據(jù)題目中小車行駛?cè)痰臅r間要求,可知小車的行駛速度很慢,普通的電機很難滿足此速度要求,而直流減速電機可以滿足此要求,且具有很大的轉(zhuǎn)動力矩,不會在傾斜面出現(xiàn)堵轉(zhuǎn)情況。故我們采用直流減速電機。
在選用驅(qū)動模塊方面有以下兩種方案:一是采用專用驅(qū)動芯片。該芯片集成度高,占用空間小,主要應(yīng)用于電機調(diào)速場合,但價格較高。二是采用晶體三極管驅(qū)動電路。由于電動車所要求的功能比較簡單,用晶體三極管驅(qū)動就可以了,故我們最后決定用第二種方案。
2.4 信息顯示模塊
若采用LED,缺點是占用單片機接口太多,顯示信息量少,需要循環(huán)顯示,占用太多程序資源。而采用LCD,只占用單片機6條I/O線,同時顯示信息量大,靈活多變顯示多種信息。因此,我們擬采用后者。
2.5 電源選擇
方案一:所有器件采用單一電源(5節(jié)五號電池)。這樣供電比較簡單,但是由于電動機啟動瞬間電流很大,會造成電壓不穩(wěn)、有毛刺等干擾,嚴重時可能會造成單片機系統(tǒng)掉電,使之不能完成預(yù)定行程。
方案二:雙電源供電。電動機驅(qū)動電源采用5節(jié)5號電池(大容量2.3Ah電池),單片機及其外圍電路電源采用另一組3節(jié)5號電池(大容量2.3Ah電池)供電,兩路電源完全分開,這樣做雖然不如單電源方便靈活,但可以將電動機驅(qū)動所造成的干擾徹底消除,提高了系統(tǒng)穩(wěn)定性。
我們認為本設(shè)計的穩(wěn)定可靠性更為重要,故擬采用方案二。
經(jīng)過一番仔細的論證比較,我們最終確定的電動車蹺蹺板系統(tǒng)框圖如圖4所示。
圖4 電動車蹺蹺板系統(tǒng)框圖
3.系統(tǒng)分立模塊設(shè)計及工作原理
3.1尋跡線探測電路
采用型號為E3F-DS30C4集成斷續(xù)式光電開關(guān)探測器,該探頭輸出端只有三根線(電源線、地線、信號線),只要將信號線接在單片機的I/O口,然后不停地對該I/O口進行掃描檢測,當(dāng)其為高電平時則檢測到白紙,當(dāng)為低電平時則檢測到黑線區(qū)域。小車前進(倒退)時,始終保持黑線在車頭(車尾)兩個傳感器之間,當(dāng)小車偏離黑線時,探測器一旦探測到有黑線,單片機就會按照預(yù)先編定的程序發(fā)送指令給小車的控制系統(tǒng),控制系統(tǒng)再對小車路徑予以糾正。當(dāng)小車回到了軌道上時,車頭(車尾)兩個探測器都只檢測到白紙,則小車繼續(xù)直線行走,否則小車會持續(xù)進行方向調(diào)整操作,直到小車恢復(fù)正常。
3.2平衡狀態(tài)檢測電路
圖5 分壓比較式平衡檢測電路
在平衡檢測電路中,我們運用了高精度角度傳感器,此傳感器通過對自身偏離水平角度的測量,對應(yīng)線性輸出一定范圍內(nèi)的電壓值。依據(jù)題目的要求,我們分析得出小車隨蹺蹺板上下擺動幅度在正負4度角時即認為其處于平衡狀態(tài)。而此角度傳感器在此區(qū)間內(nèi)的靈敏度最高,其輸出電壓為2.45-2.55伏之間。將此輸出電壓經(jīng)比較放大,然后通過A/D轉(zhuǎn)換器轉(zhuǎn)換成數(shù)字量通入到單片機中。但是由于整個變化范圍只有0.1度角,任何輕微的干擾都會使測量結(jié)果產(chǎn)生嚴重的偏差。用A/D轉(zhuǎn)換又會使精度降低,干擾過大,又因為現(xiàn)實中很難做到真正的靜態(tài)平衡,所以我們最終決定采用動態(tài)尋找平衡的方式,因此用分壓電路和電壓比較器制作信號電路,根據(jù)信號端的變化控制小車,使角度傳感器的電壓輸出保持在2.45-2.55伏之間,經(jīng)多次測試與精心調(diào)試,該電路可很好的滿足要求。平衡檢測電路如圖5所示。
3.3 電動機驅(qū)動電路
電動機驅(qū)動電路如圖6所示。該驅(qū)動電路中的J1接電機,MOT1和MOT2接高低電平來控制電機的正反轉(zhuǎn),進而控制電機的前進和后退以及左右轉(zhuǎn)向。
圖6 電動機驅(qū)動電路
4. 軟件設(shè)計
軟件結(jié)構(gòu)如圖7所示。(詳細軟件流程圖見附錄)
評論