數(shù)字式光伏陣列模擬器的研究及設(shè)計(jì)
具體調(diào)節(jié)時(shí),若采集的電壓電流對(duì)應(yīng)的負(fù)載工作點(diǎn)在(點(diǎn)A),曲線外時(shí),可以減小占空比D。以減小輸出電壓,從而使工作點(diǎn)沿負(fù)載線向B點(diǎn)移動(dòng),此時(shí)B點(diǎn)就是想要的工作點(diǎn);而當(dāng)采集的電壓電流對(duì)應(yīng)的負(fù)載工作點(diǎn)在(點(diǎn)A),曲線內(nèi)部時(shí),則可增大占空比D,從而增大輸出電壓,使工作點(diǎn)沿負(fù)載線向B點(diǎn)移動(dòng)。由于負(fù)載為阻性,所以,基于電壓和基于電流的調(diào)節(jié)是等效的。本文由于輸出電壓的惰性,設(shè)計(jì)時(shí)采用了基于電流的調(diào)節(jié)方式。 本文引用地址:http://butianyuan.cn/article/190042.htm
當(dāng)外部環(huán)境不變,也就是太陽能電池板的輸出曲線不變時(shí),若負(fù)載變化,則馬上可以得到新的負(fù)載工作點(diǎn),這樣,按照以上方法調(diào)節(jié)占空比,也可使負(fù)載工作點(diǎn)沿負(fù)載線方向移動(dòng)到我們想要的曲線上。
事實(shí)上,當(dāng)負(fù)載不變,環(huán)境變化(也就是曲線變化)時(shí),仍可按照事先存人的曲線數(shù)據(jù)把新的曲線調(diào)出來,然后與負(fù)載比較來得到新的工作點(diǎn),之后仍按照以上方法調(diào)節(jié)占空比,使負(fù)載工作點(diǎn)沿負(fù)載線方向移動(dòng)到我們想要的曲線上。
3算法實(shí)現(xiàn)流程
采用數(shù)據(jù)表查表法時(shí),程序在逼近工作點(diǎn)的過程通常需要一定時(shí)間,因?yàn)樗惴ū旧硇枰粋€(gè)步進(jìn)量,步進(jìn)量的大小選取也是個(gè)問題,且方法復(fù)雜。而采用四折線法來實(shí)時(shí)計(jì)算工作點(diǎn)則具有計(jì)算量小,執(zhí)行時(shí)間短等優(yōu)點(diǎn)。
由太陽能電池板輸出的伏安特性曲線可以看出,開路點(diǎn)和短路點(diǎn)處的曲線都比較平滑,故可用四條折線來模擬。在這四條折線的方程曲線中,某一負(fù)載電阻RL必然與這四條折線的一條相交。這樣,就可以直接構(gòu)造負(fù)載電阻RL與輸出電流的關(guān)系方程,進(jìn)而得到負(fù)載電阻RL與所需占空比D的關(guān)系方程。因此,在程序中只需計(jì)算一個(gè)除法和一個(gè)加法運(yùn)算就可以得到所需的占空比D,實(shí)現(xiàn)起來簡便易行。同樣,如果需要多組曲線,只需構(gòu)造多組折線方程預(yù)先存入ARM中就可以了。其程序執(zhí)行流程圖圖4所示。
4SIMULINK仿真結(jié)果分析
為了提高系統(tǒng)的響應(yīng)速度,減小穩(wěn)態(tài)誤差,本設(shè)計(jì)在電流反饋中使用了PI控制。其控制框圖如圖5所示。根據(jù)本文的控制策略,從測得的輸出電壓電流可以得到輸出負(fù)載RL,進(jìn)而得到參考電流Iref。把該電流與實(shí)際輸出電流相減再送人PI控制器中,然后用PI輸出控制調(diào)節(jié)占空比,進(jìn)而使實(shí)際輸出電流與Iref一致。
圖6是用SIMUUNK工具構(gòu)造的仿真模型。用該系統(tǒng)模擬的太陽能電池板的最大輸出功率為120W。由150V直流電源提供輸入,經(jīng)BUCK降壓電路后加在負(fù)載RL上。再將測得的負(fù)載兩端電壓除以電流,就可得到輸出負(fù)載RL的值。為了避免繁瑣的計(jì)算,提高系統(tǒng)的響應(yīng)速度,可以將打算輸出的電池板的I-U曲線擬合成RL-Iref關(guān)系曲線。再做成LookupTable數(shù)據(jù)表。這樣,通過查表就很容易得到參考電流Iref。如果想要擬合不同日照溫度下的電池板的I-U曲線,只要把LookupTable的值進(jìn)行相應(yīng)的更換就可以了。
本文采用試湊法對(duì)PI控制器的參數(shù)進(jìn)行了整定。首先將積分時(shí)間常數(shù)Ti取零,即取消積分作用,而采用純比例控制。然后將比例增益P由小變到大,并觀察系統(tǒng)響應(yīng),直至系統(tǒng)響應(yīng)速度變快到一定范圍的超調(diào)為止。之后再將積分時(shí)間常數(shù)Ti由大逐漸減小,使積分作用逐漸增強(qiáng),這樣,觀察輸出會(huì)發(fā)現(xiàn)系統(tǒng)的靜差會(huì)逐漸減少直至消除。操作時(shí)可以反復(fù)試驗(yàn)幾次,直到消除靜差的速度滿意為止。本設(shè)計(jì)最終選擇P=200,Ti=2。
根據(jù)系統(tǒng)電壓要求及BUCK電路特性可以算出電感L取2mH,電容C取100μF,ARM存入的I-U曲線的開路電壓為40V,短路電流為3A。當(dāng)取RL=24Ω時(shí),根據(jù)光伏電池的I-U曲線,系統(tǒng)應(yīng)輸出36.54V電壓,輸出電流為1.524A,仿真后得到負(fù)載兩端的電壓波形如圖7所示。
由圖7可以看出,所得到的電壓電流值剛好就是想要得到的I-V曲線上的點(diǎn)。系統(tǒng)從開機(jī)到穩(wěn)定值的動(dòng)態(tài)響應(yīng)時(shí)間約為10ms,響應(yīng)速度比較快。由于PI超調(diào)的作用,剛開始有一個(gè)明顯的尖峰電壓電流,在實(shí)際實(shí)驗(yàn)中,應(yīng)在負(fù)載兩端并聯(lián)一個(gè)高耐壓的小電容,以吸收尖峰電壓。
更換負(fù)載電阻的大小可使每個(gè)阻值對(duì)應(yīng)一對(duì)電壓電流值,也就是負(fù)載工作點(diǎn)。圖8用符號(hào)‘*'表示。把這些工作點(diǎn)與預(yù)存的光伏電池的I-U曲線相比可知,這些工作點(diǎn)大致在光伏電池I-U曲線附近,其多點(diǎn)仿真結(jié)果如圖8所示。
5結(jié)束語
本文用SIMULINK開發(fā)出了一種新的太陽能電池陣列模擬器的仿真模型,并提出了一種基于四折線法來進(jìn)行光伏電池陣列輸出曲線的分段擬合方法。論證了一種用電流反饋PI控制BUCK電路做成的光伏電池陣列模擬器。由仿真結(jié)果可以看到,本系統(tǒng)可以較快的擬合出想要的電池陣列輸出I-V曲線??梢栽诠夥l(fā)電系統(tǒng)研究中,代替實(shí)際的太陽能電池來進(jìn)行實(shí)驗(yàn)。
評(píng)論