可編程增益跨阻放大器使光譜系統(tǒng)的動態(tài)范圍達到最大
要計算系統(tǒng)的總噪聲,同樣可以對TIA的噪聲貢獻和PGA的噪聲貢獻求和方根,如表3所示。本例假設PGA包括一個34 kHz濾波器。可以看到,增益為10時,TIA的噪聲貢獻乘以PGA增益后出現在PGA的輸出端。
本文引用地址:http://butianyuan.cn/article/153287.htm正如我們所預期的,PGA以10倍增益工作與PGA以1倍增益工作相比,輸出噪聲略大于10倍。
單增益級的噪聲優(yōu)勢
另一種方法是使用具有可編程增益的跨阻放大器,徹底消除PGA級。圖9顯示了具有兩個可編程跨阻增益(1 MΩ和10 MΩ)的理論電路。各跨阻電阻需要自己的電容來補償光電二極管的輸入電容。為與上例保持一致,兩種增益設置下的信號帶寬仍為34 kHz。這意味著,應選擇一個0.47 pF電容與10 MΩ電阻并聯。這種情況下,使用1 MΩ電阻時的輸出電壓噪聲與公式12相同。使用10 MΩ跨阻增益時,較大的電阻導致較高的約翰遜噪聲、較高的電流噪聲(此時的電流噪聲乘以10 MΩ而不是1 MΩ)和較高的噪聲增益。同理,三個主要噪聲源為:
總輸出噪聲為:
在輸出端添加一個帶寬為34 kHz的單極點RC濾波器可降低噪聲,系統(tǒng)總噪聲為460 μVrms。由于增益較高,fp2 更接近信號帶寬,因此降噪效果不如使用1 MΩ增益那樣顯著。
表4是兩種放大器架構的噪聲性能小結。對于10 MΩ的跨阻增益,總噪聲比兩級電路低大約12%。
可編程增益跨阻放大器
圖9顯示了一個可編程增益跨阻放大器。這是一個很好的概念設計,但模擬開關的導通電阻和漏電流會引入誤差。導通電阻引起電壓和溫度相關的增益誤差,漏電流引起失調誤差,特別是在高溫時。
圖10所示電路在每個跨阻分支中使用兩個開關,從而避免了上述問題。雖然它需要的開關數量加倍,但左側開關的導通電阻在反饋環(huán)路內,因此輸出電壓僅取決于通過所選電阻的電流。右側開關看似輸出阻抗,如果放大器驅動ADC驅動器等高阻抗負載,它產生的誤差可忽略不計。
圖10電路適用于DC和低頻,但在關斷狀態(tài)下,開關上的寄生電容是另一大難題。這些寄生電容在圖10中標記為Cp,將未使用的反饋路徑連接到輸出端,因此會降低整體帶寬。圖11顯示這些電容最終如何連接到未選擇的增益分支,從而將跨阻增益變?yōu)檫x定增益與未選定增益衰減版本的并聯組合。
電子管相關文章:電子管原理
評論