新聞中心

EEPW首頁 > 汽車電子 > 設(shè)計應用 > 燃料電池汽車整車控制器硬件在環(huán)實時仿真測試平臺

燃料電池汽車整車控制器硬件在環(huán)實時仿真測試平臺

作者: 時間:2012-05-21 來源:網(wǎng)絡 收藏

隨著工業(yè)的發(fā)展和進步,人們對的動力性、經(jīng)濟性、安全性及排放等方面提出了更高的要求,傳統(tǒng)的機械式控制系統(tǒng)已經(jīng)遠遠不能滿足這些需要。電子化控制系統(tǒng)以其高精度、高速度、控制靈活、穩(wěn)定可靠等特點逐漸取代了機械式控制系統(tǒng),是控制系統(tǒng)的發(fā)展趨勢。

本文引用地址:http://butianyuan.cn/article/196815.htm

由于對控制性能的要求越來越嚴格,使得汽車電子控制系統(tǒng)對控制器的要求越來越高??刂破鞯拈_發(fā)與設(shè)計一般都要經(jīng)過如圖1所示的步驟,即由上層到底層,再由底層到上層的一個V字形過程。首先是控制器的上層功能設(shè)計,詳細確定控制器將要實現(xiàn)的功能;然后生成目標程序代碼;最后是控制器的底層軟、硬件實現(xiàn)。

11.gif

從控制器實現(xiàn)到實車的過程中還需要進行硬件在環(huán)實時仿真。這是因為在整的開發(fā)過程中,利用整硬件在仿真平臺構(gòu)建虛擬的整車現(xiàn)場環(huán)境。對控制器進行硬件在環(huán)仿真測試,不但可以大大加快整軟、硬件的開發(fā)過程,而且開發(fā)成功的控制器具有較高的可靠性。因為仿真測試平臺可以模擬出在實車試驗中難以實現(xiàn)的特殊行駛狀態(tài)和危險狀態(tài),從而對整車控制器進行全面的測試??刂破饔布诃h(huán)仿真測試中,系統(tǒng)用數(shù)學模型來代替,控制器使用實物,系統(tǒng)模型和控制器之間的接口要與實際保持一致,在仿真調(diào)試完畢后,達到控制器和系統(tǒng)之間的“垂直安裝”或“垂直集成”??刂破髟谕瓿捎布诃h(huán)仿真之后,就可以進入系統(tǒng)集成和測試環(huán)節(jié),最后實現(xiàn)初期設(shè)計的各項功能和指標。

本文基于Matlab/Simulink RTW 和XPC Real-time Target實時仿真平臺,配合PCI數(shù)據(jù)采集卡底層軟件的開發(fā)和信號調(diào)理裝置硬件設(shè)計,系統(tǒng)地實現(xiàn)了汽車整車控制器仿真測試平臺。利用該平臺可以對整車控制器硬件電氣特性、底層軟件平臺和控制算法等進行測試。

硬件在環(huán)實時仿真測試平臺方案設(shè)計

硬件在環(huán)實時仿真平臺構(gòu)建了虛擬的整車環(huán)境,并基于虛擬的人機交互司機模型,將人作為硬件在環(huán)的一個元素引入到實際的仿真測試中,具體結(jié)構(gòu)如圖2所示。兩個基于工業(yè)控制計算機的虛擬平臺分別為虛擬整車平臺和虛擬司機平臺。虛擬整車平臺基于Matlab/Simulink xPC Target實時仿真環(huán)境,作用是模擬真實客車的運行,為測試整車控制器提供所需的虛擬控制對象。虛擬司機平臺基于Matlab/Simulink RTW Target實時仿真環(huán)境,作用是模擬真實客車的操控機構(gòu),配合加速踏板為測試整車控制器提供所需的虛擬駕駛環(huán)境。當兩個計算機虛擬平臺對實際環(huán)境進行模擬時,通過數(shù)據(jù)采集卡、CAN通訊卡與可配置的信號處理裝置相連,可配置的信號處理裝置對信號進行處理,從而實現(xiàn)真實的復雜整車環(huán)境,直接與整車控制器連接進行仿真測試試驗。并配有基于CAN總線的實時監(jiān)控裝置,可以全過程實時地監(jiān)控仿真測試試驗。

22.gif

硬件在環(huán)實時仿真測試平臺硬件設(shè)計

虛擬平臺硬件設(shè)計

虛擬平臺的硬件需要完成計算機模型產(chǎn)生的虛擬信號到真實信號的轉(zhuǎn)換,這些信號包括數(shù)字量輸入輸出信號、模擬量輸入輸出信號和CAN通訊信號。例如燃料電池發(fā)動機啟動開關(guān)信號屬于數(shù)字信號,電機轉(zhuǎn)速信號屬于模擬信號,而控制器控制命令通過CAN總線網(wǎng)絡進行傳送。

虛擬平臺的數(shù)字信號和模擬信號通過PCI接口的數(shù)據(jù)采集卡實現(xiàn)與真實世界的交換。采用的各種通訊卡一般都具有Matlab底層軟件驅(qū)動程序,可以直接用于實時仿真。對于部分不支持Matlab實時仿真環(huán)境的數(shù)據(jù)采集卡, 可以采用Matlab/Simulink環(huán)境下的S函數(shù)編寫,并在Matlab環(huán)境下調(diào)用動態(tài)鏈接庫。本文采用的PCI1731、PCI1723和PCI1720板卡并不配套Matlab驅(qū)動程序,因此采用S函數(shù)進行集成。整個虛擬平臺共具備32路數(shù)字量輸入接口、32路數(shù)字量輸出接口、32路數(shù)字量輸入/輸出復用接口、32路模擬量輸入接口和20路模擬量輸出接口。

虛擬平臺產(chǎn)生或接收的CAN信號通過PCI總線與CAN通訊卡相連,由CAN通訊卡通過CAN總線與待測整車控制器進行通訊。虛擬平臺支持CAN2.0A和CAN2.0B擴展協(xié)議,能夠同時輸出2路獨立的CAN信號。

信號調(diào)理器硬件設(shè)計

由于燃料電池客車上的信號比較復雜,數(shù)字信號有24V、12V和5V等不同的驅(qū)動電平和驅(qū)動方式,模擬信號也有各種電壓范圍和驅(qū)動功率的不同需求。而從虛擬平臺經(jīng)過數(shù)據(jù)采集卡輸出的信號比較單一,故經(jīng)過信號調(diào)理器對信號進行調(diào)理后,才能夠完全再現(xiàn)燃料電池客車上的真實控制接口,直接與整車控制器連接進行仿真測試。

如圖2所示,虛擬平臺產(chǎn)生或接收的數(shù)字模擬信號通過PCI總線與數(shù)據(jù)采集卡相連。數(shù)據(jù)采集卡與可配置的信號調(diào)理器之間通過專用的數(shù)據(jù)線進行數(shù)據(jù)交換,經(jīng)過可配置的信號調(diào)理器對信號進行必要的放大、電平轉(zhuǎn)換、邏輯轉(zhuǎn)換后,輸出信號完全符合實際整車信號規(guī)范,并采用標準接口與待測整車控制器相連,從而實現(xiàn)對整車控制器的無縫連接。通過調(diào)整可配置信號調(diào)理器的配置方式,可以實現(xiàn)各種車輛的不同信號規(guī)范。信號調(diào)理器為靈活的母板子板設(shè)計,母板完成通用的信號連接電源供給等任務,子板完成具體的可配置信號處理功能。母板和子板聯(lián)合工作,可以根據(jù)用戶的需要隨時更換子板電路,以滿足不同仿真測試的需要。

硬件在環(huán)實時仿真測試平臺軟件設(shè)計

虛擬整車平臺軟件設(shè)計

虛擬整車平臺基于Matlab/Simulink平臺構(gòu)建了燃料電池汽車仿真模型,該模型包括燃料電池發(fā)動機、DC-DC變換器、蓄電池、異步驅(qū)動電機及車輛負載。系統(tǒng)各部件模型一方面需考慮模型精度,另一方面必須滿足實時性的要求。整個模型在Matlab/Simulink xPC Target實時仿真環(huán)境上運行。整車仿真模型通過PCI數(shù)據(jù)采集卡和PCI CAN卡實現(xiàn)與駕駛員和整車控制器的通訊。

虛擬司機平臺軟件設(shè)計

虛擬司機平臺實現(xiàn)了可供駕駛員操作的虛擬駕駛環(huán)境。除了駕駛加速信號由測試人員通過踏板輸入外,其余整車啟停開關(guān)、燃料電池開關(guān)、電機轉(zhuǎn)速表、車速表、水溫報警等控制開關(guān)和儀表均由虛擬司機平臺實現(xiàn)。整個模型基于Matlab/Simulink RTW Target 實時仿真環(huán)境實現(xiàn),并利用Matlab Gauges工具箱實現(xiàn)了整車儀表顯示和控制開關(guān)輸入。Gauges是Matlab在Simulink中提供的一款用于顯示監(jiān)控數(shù)據(jù)的儀表開發(fā)工具,利用Gauges工具箱可以在Simulink模型中快速地開發(fā)出虛擬車用儀表系統(tǒng)。虛擬司機仿真模型同樣通過PCI數(shù)據(jù)采集卡和PCI CAN卡實現(xiàn)與駕駛員和整車控制器的通訊。

模擬信號相關(guān)文章:什么是模擬信號



上一頁 1 2 下一頁

關(guān)鍵詞: 燃料電池 汽車 車控制器 測試

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉