新聞中心

EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 半大馬士革集成中引入空氣間隙結(jié)構(gòu)面臨的挑戰(zhàn)

半大馬士革集成中引入空氣間隙結(jié)構(gòu)面臨的挑戰(zhàn)

—— 幫助imec確定使用半大馬士革集成和空氣間隙結(jié)構(gòu)進(jìn)行3nm后段集成的工藝假設(shè)
作者:泛林集團(tuán)Semiverse? Solution部門半導(dǎo)體工藝與整合工程師Assawer Soussou博士 時(shí)間:2023-12-18 來(lái)源:電子產(chǎn)品世界 收藏

image.png

本文引用地址:http://butianyuan.cn/article/202312/454016.htm

l  隨著芯片制造商向3nm及以下節(jié)點(diǎn)邁進(jìn),后段模塊處理迎來(lái)挑戰(zhàn)

l  集成方案中引入可能有助于縮短電阻電容的延遲時(shí)間

 

隨著器件微縮至3nm及以下節(jié)點(diǎn),后段模塊處理迎來(lái)許多新的挑戰(zhàn),這使芯片制造商開(kāi)始考慮新的后段集成方案。

 

在3nm節(jié)點(diǎn),最先進(jìn)的銅金屬化將被低電阻、無(wú)需阻擋層的釕基后段金屬化所取代。這種向釕金屬化的轉(zhuǎn)變帶來(lái)減成圖形化這一新的選擇。這個(gè)方法也被稱為“集成”,結(jié)合了最小間距互連的減成圖形化與通孔結(jié)構(gòu)的傳統(tǒng)大馬士革。

 

互連線減成圖形化的優(yōu)點(diǎn)之一,是提供了轉(zhuǎn)變至(更)高深寬比金屬線的機(jī)會(huì)。但它也有缺點(diǎn),那就是會(huì)增加電容。如果引入,支持互連線隔離,則可以克服這種不良影響。因此,空氣間隙常常被視作縮短電阻電容延遲時(shí)間的主要手段。

 

前文提出的集成方案可結(jié)合完全空氣間隙集成,用于最關(guān)鍵的最小間距金屬層(M1和M2)。它也可以與傳統(tǒng)的雙大馬士革或混合金屬化方案相結(jié)合。

 

我們支持了的一項(xiàng)研究,對(duì)先進(jìn)3nm節(jié)點(diǎn)后段集成方案進(jìn)行分析。研究中,我們使用SEMulator3D?工藝模擬軟件對(duì)半大馬士革集成流程和引入進(jìn)行模擬。這幫助在試產(chǎn)線上進(jìn)行硅晶圓處理之前,就能更好地了解集成潛在的挑戰(zhàn)和相關(guān)的失敗風(fēng)險(xiǎn)。該項(xiàng)目的目標(biāo)是確定使用半大馬士革集成和空氣間隙結(jié)構(gòu)進(jìn)行3nm后段集成的工藝假設(shè)。

 

流程模擬

 

使用SEMulator3D對(duì)3nm后段方案的半大馬士革空氣間隙工藝流程進(jìn)行模擬。圖1展示了關(guān)鍵的工藝步驟,其中包括M1釕刻蝕步驟、隨后的空氣間隙閉合、完全自對(duì)準(zhǔn)通孔圖形化、完全自對(duì)準(zhǔn)通孔/M2金屬化、以及最后的M2圖形化。

 

此次研究中,為了真實(shí)地再現(xiàn)空氣間隙形狀,我們根據(jù) 10nm半間距金屬互連模塊的透射電子顯微鏡 (TEM) 圖像,對(duì)M1釕圖形化和空氣間隙閉合工藝步驟進(jìn)行校準(zhǔn)。 

 image.png

圖1:3nm節(jié)點(diǎn)后段半大馬士革空氣間隙工藝流程

 

空氣間隙方面的挑戰(zhàn)

 

為了避免潛在的硅晶圓工藝失效,我們利用SEMulator3D研究了半大馬士革空氣間隙工藝流程中,空氣間隙閉合相關(guān)的挑戰(zhàn)和薄弱環(huán)節(jié)。

 

圖2展示了3nm節(jié)點(diǎn)半大馬士革空氣間隙工藝面臨的挑戰(zhàn)。其中,該圖突出展示了空氣間隙閉合后進(jìn)行平坦化、以保持介電常數(shù)k值和共形性的需求,以及空氣間隙閉合控制這一關(guān)鍵的工藝挑戰(zhàn)。

 

我們的模擬顯示,為了避免引入空氣間隙失敗,M1和M2之間應(yīng)該保留一段最小距離。換句話說(shuō),在完全自對(duì)準(zhǔn)通孔刻蝕的第一步,必須使用對(duì)暴露的硅碳氮空氣間隙閉合介電材料具有高選擇比的工藝。

 

在隨后的硅碳氮刻蝕工藝步驟中,為了與下層金屬1釕相接,需要進(jìn)行刻蝕工藝,使硅碳氮介電層產(chǎn)生較高的傾斜度。這可以減少對(duì)間隙閉合介電層的過(guò)度刻蝕,并在通孔刻蝕工藝中保持空氣間隙閉合。圖3左右的模擬結(jié)果分別展示了需要的二氧化硅與硅碳氮的刻蝕選擇比,和理想的硅碳氮傾斜度。

image.png

圖2:半大馬士革空氣間隙工藝流程挑戰(zhàn)

 

image.png

圖3:空氣間隙閉合的薄弱環(huán)節(jié)

 

敏感性分析

 

在模擬中,我們對(duì)可以控制和維持空氣間隙閉合和體積的工藝參數(shù)進(jìn)行敏感性分析。其間,通過(guò)改變M1光刻關(guān)鍵尺寸、硅碳氮間隙閉合介電層厚度、二氧化硅硬掩膜厚度、M1釕橫向刻蝕和釕高度,我們?cè)赟EMulator3D上共進(jìn)行了200次蒙特卡羅實(shí)驗(yàn)。相關(guān)工藝參數(shù)和評(píng)估參數(shù)范圍的詳細(xì)信息見(jiàn)圖4。

image.png

圖4:空氣間隙閉合工藝敏感性分析

 

模擬表明,關(guān)鍵尺寸越小,硅碳氮沉積失敗的風(fēng)險(xiǎn)越大,因此,造成空氣間隙閉合失敗的最大因素是金屬1關(guān)鍵尺寸和較小的二氧化硅硬掩膜厚度。此外,金屬1釕厚度和二氧化硅硬掩膜厚度也是影響空氣間隙體積的最大因素(見(jiàn)圖5)。 

image.png

圖5:工藝敏感性研究結(jié)果:

對(duì)空氣間隙閉合失敗影響的研究(上2圖)

對(duì)空氣間隙體積影響的研究(下2圖)

 

空氣間隙體積敏感性研究的結(jié)果被用于量化對(duì)電阻電容降低的影響,相應(yīng)的分析結(jié)果見(jiàn)圖6。

 

image.png

圖6:空氣間隙體積工藝敏感性研究及其對(duì)電阻電容降低的影響

 

主要收獲

 

在這項(xiàng)研究中,我們使用SEMulator3D模擬為3nm節(jié)點(diǎn)后段進(jìn)行半大馬士革空氣間隙工藝的流程。為了確定為3nm節(jié)點(diǎn)后段進(jìn)行半大馬士革集成的最佳工藝,模擬研究了潛在的薄弱環(huán)節(jié)和工藝挑戰(zhàn)。

 

工藝流程模擬顯示,空氣間隙材料的選擇和刻蝕工藝是半大馬士革和空氣間隙工藝方案能否成功的關(guān)鍵。這些工藝模型非常有價(jià)值,因?yàn)閕mec不用經(jīng)歷耗時(shí)、耗財(cái)?shù)墓杈A制造過(guò)程,就能研究3nm后段工藝方案的關(guān)鍵工藝。

 

鳴謝

由衷感謝Gayle Murdoch和imec同意我們分享這項(xiàng)研究。此研究獲得了Pin3s ECSEL Joint Undertaking的支持。




評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉