RFID讀寫器基帶DSP設(shè)計
1 引言
超高頻RFID系統(tǒng)空中接口標(biāo)準(zhǔn)包括ISO/IEC 系列,F(xiàn)2C系列,以及中國正在研究制定的國家標(biāo)準(zhǔn),數(shù)字接收機(jī)可實現(xiàn)軟件升級和多協(xié)議支持,相比模擬接收機(jī)具備易于調(diào)試、應(yīng)用靈活的優(yōu)勢,因而在超高頻姍讀寫器中得到了廣泛應(yīng)用.提高超高頻RFID讀寫器的讀取效果一直是近年來的研究重點.在經(jīng)過詳盡分析和實驗驗證后,本文給出相關(guān)問題的解決辦法。
超高頻RFID讀寫器是與標(biāo)簽之間采用反向散射原理完成通信,根據(jù)當(dāng)前主要的UHF頻段空中接口標(biāo)準(zhǔn)ISO/IEC 18000-6C,標(biāo)簽在無源狀態(tài)下以同頻半雙工方式通訊.基本的通信過程是,讀寫器采用幅移鍵控(ASK)等方式來調(diào)制載波,在特定頻率的信道上將信息發(fā)送給一個或多個標(biāo)簽.之后讀寫器仍然需要發(fā)射CW載波,在指定的時間內(nèi)來等待標(biāo)簽的應(yīng)答。
零中頻架構(gòu)具有不需要中頻環(huán)節(jié),能夠減小功耗,降低電路復(fù)雜度,易于調(diào)試等優(yōu)點.零中頻RFID數(shù)字接收機(jī)電路框圖如圖1所示.天線接收進(jìn)來的射頻信號通過環(huán)行器后直接進(jìn)入下變頻器,轉(zhuǎn)換完成的基帶信號通過LNA放大、低通濾波,輸出兩路I、Q基帶信號交由基帶進(jìn)行數(shù)字信號處理。
圖1 零中頻RFID數(shù)字接收機(jī)電路框圖
讀寫器的通信效果受到發(fā)射機(jī)輸出功率、接收機(jī)靈敏度、收發(fā)天線增益、收發(fā)隔離度、標(biāo)簽功耗、標(biāo)簽天線增益,以及環(huán)境狀況等參數(shù)的影響.其中,發(fā)射端 最大有效全向發(fā)射功率(EIRP)受到國家無線電發(fā)射設(shè)備管制,收發(fā)隔離度受到環(huán)行器等器件隔離度限制(一般只能達(dá)到25dB),在標(biāo)簽、天線和環(huán)境等參 數(shù)一定的條件下,接收機(jī)的性能對讀寫器整機(jī)性能起決定性作用。
2 接收機(jī)性能影響因素分析
超高頻RFID讀寫器接收機(jī)工作時也需要發(fā)射機(jī)發(fā)出無調(diào)制的載波.接收機(jī)接收到的包括標(biāo)簽反射信號、天線噪聲、環(huán)境反射、發(fā)射機(jī)直接耦合,以及接收 機(jī)自身的噪聲等。在標(biāo)簽?zāi)塬@得足夠工作能量的前提下,讀寫器的工作距離主要取決于標(biāo)簽反向散射信號在讀寫器的解調(diào)輸出能否滿足最低信噪比要求.根據(jù)文獻(xiàn) [3],可用下面的公式來標(biāo)示讀寫器決定的最大工作距離:
其中,C是電磁波在自由空間的傳播速度,ω是電磁波信號的角頻率,Г是標(biāo)簽功率反射系數(shù),ξ是收發(fā)隔離系數(shù),GR是讀寫器天線增益,Gt是標(biāo)簽天線 增益,分母中的Ppn表示本振的單邊帶通帶內(nèi)相位噪聲功率,可以計算本振已知的相位噪聲數(shù)據(jù)或者使用頻譜分析儀(SPA)直接測量獲得.分子中的 PDATA表示標(biāo)簽二進(jìn)制數(shù)據(jù)序列的單邊帶通帶內(nèi)信號功率,可以數(shù)值計算的方式得到.根據(jù)公式,在標(biāo)簽參數(shù)、天線增益和收發(fā)隔離等參數(shù)一定的情況下,讀寫 器的工作距離取決于接收機(jī)的信噪比性能(SNR),尤其是相位噪聲以及降噪處理效果。
環(huán)境折反射干擾及相位噪聲主要在載波頻率附近,下變頻之后表現(xiàn)為低頻噪聲;基帶信號上混有常見的高頻噪聲,在密集讀寫器模式下,需要控制接收機(jī)帶寬在一定范圍以避免讀寫器之間相互干擾,因此需要對基帶信號作帶通濾波處理,以提高其信噪比。
直流偏移是零中頻結(jié)構(gòu)特有的一種干擾,是由于接收機(jī)中本振、發(fā)射機(jī)泄漏、環(huán)境反射等信號耦合到混頻器輸入端形成的。讀寫器收發(fā)同頻造成了直流偏移遠(yuǎn) 大于常規(guī)的接收機(jī),加上常見工作距離只有3—5米,載波泄漏情況還受天饋及環(huán)境影響,直流偏移具有時變性.直流偏移不僅破壞了后級電路的直流工作點,還影 響放大濾波電路的線性度性能,使信噪比變差.使用環(huán)行器的單天線設(shè)計中,環(huán)行器隔離度有限導(dǎo)致發(fā)射泄漏到接收端的強(qiáng)度大,直流偏移問題會更加嚴(yán)重,直流偏 移、環(huán)境折反射引起的幅度相位干擾、本振相位噪聲、ADC量化噪聲等都可降低接收機(jī)的信噪比,提高其性能除了要在模擬射頻電路上進(jìn)行改進(jìn),還必須在基帶信 號處理算法上采取相應(yīng)措施。
3 基帶數(shù)字信號處理
為保證正確完成解碼,基帶數(shù)字信號處理需要完成噪聲與干擾的消除,以適當(dāng)?shù)姆绞酵瓿葾SK信號判決.關(guān)鍵的處理措施包括:過采樣與濾波、直流偏移校正、數(shù)據(jù)解碼等。
3.1 過采樣與濾波
根據(jù)奈奎斯特采樣定理,為了使采樣信號能恢復(fù)成原來的連續(xù)信號,采樣頻率至少應(yīng)大于信號最高頻率的兩倍,過采樣是在奈奎斯特頻率的基礎(chǔ)上將采樣頻率提高一個過采樣倍律的水平,過采樣能夠降低有效帶寬內(nèi)量化噪聲的功率,提高信噪比,相當(dāng)于增加了ADC的分辯率,過采樣得到的數(shù)據(jù)可以用CIC濾波器進(jìn)行抽取,使數(shù)據(jù)率回到正常水平,再級聯(lián)FIR濾波器進(jìn)行帶通濾波,進(jìn)一步降低噪聲功率,提高信噪比。
以常見的碼率250kbps的ASK標(biāo)簽返回信號為例,為了能夠和ADC芯片性能配合,選擇過采樣系數(shù)為40,則采樣速率為20MSI焉.抽取之后的碼率設(shè)定為回發(fā)數(shù)據(jù)碼率的8倍,即2Mbps,CIC濾波級數(shù)為3。
FM0編碼的絕大部分信號功率都在第一零點內(nèi),通常第一零點帶寬位置為通信速率的2倍,加入時鐘抖動后,其最大的第一零點帶寬可達(dá)通信速率的2.5倍,因此,設(shè)置低通截止頻率為650kHz;考慮同步頭的V特征點,可設(shè)置高通截止頻率為160kHz,以便在有限的資源條件下盡可能濾除帶外噪聲.圖2為設(shè)計得到的帶通濾波器幅頻特性曲線。
圖2 帶通濾波器的幅頻特性曲線
3.2 直流偏移校正
以電路硬件方式處理直流偏移的辦法包括:交流耦合、載波消除、諧波混頻、自校正補(bǔ)償?shù)?,其中諧波混頻處理、自校正補(bǔ)償方法均較復(fù)雜,而實現(xiàn)的效果有局限性.文獻(xiàn)[4]提到一種載波消除的處理方法,該方法需要同時在模擬射頻和基帶單元增加補(bǔ)償電路及軟件,增加了復(fù)雜程度和成本,且調(diào)試?yán)щy.文獻(xiàn)[5]提到簡單的通過電容交流耦合方式即可濾除信號直流部分來減輕直流偏移的干擾,這種方式是所有方案中結(jié)構(gòu)最簡單、成本最低,因而應(yīng)用最廣。
標(biāo)簽回發(fā)的數(shù)據(jù)幀同步頭包括若干個前導(dǎo)零加前同步碼,基帶程序在規(guī)定時間內(nèi)探測到同步頭之后才能開始信息解碼接收。交流耦合方式雖可減輕信號過載造 成的干擾,但由于讀寫器工作在突發(fā)通信模式下,接收電路的階躍響應(yīng)特性會在同步頭位置產(chǎn)生斜坡效應(yīng),往往導(dǎo)致同步判斷錯誤,為處理斜坡,可以在基帶信號處 理前進(jìn)行中值校正,該方法僅需要對采集的數(shù)據(jù)進(jìn)行滑動窗跟蹤和p-p值平均計,其原理是:
上式中c是標(biāo)定的ADC數(shù)據(jù)中值,i是數(shù)據(jù)序號,x(i)為原始數(shù)據(jù)值,Y(i)表示該點的校正結(jié)果數(shù)據(jù),n為滑動窗的大小,j是滑動窗計算序號。
除了部分?jǐn)?shù)據(jù)頭部因為失真無法復(fù)原以外,能夠以較小的計算代價對通信幀的同步頭數(shù)據(jù)進(jìn)行還原,從而減輕直流偏移干擾對解碼同步的影響。
3.3 數(shù)據(jù)解碼
基帶數(shù)據(jù)解碼方法分為過零檢測和相干檢測兩種,過零檢測工作原理是設(shè)定一個閥值,對數(shù)據(jù)緩沖區(qū)內(nèi)的每個數(shù)據(jù)樣本都與中值相比較,如果該數(shù)據(jù)樣本與中 值的差值的絕對值大于閥值且大于平均值,就判定為1,否則都判為0。由于該方法的實現(xiàn)簡便易行,甚至利用比較器就可以實現(xiàn)判決,在中低端讀寫器產(chǎn)品上使用 廣泛。
相干檢測則具備更好的解碼能力,能夠在輸入信嗓比較差的使用環(huán)境中達(dá)到遠(yuǎn)優(yōu)于過零檢測的性能,由于FM0編碼采用正交編碼方式,滿足:
解碼之前,需事先創(chuàng)建數(shù)據(jù)數(shù)組S0和S1作為表示FMO編碼的0和1的碼元模板.根據(jù)公式,輸入數(shù)據(jù)分別與S0和S1作相關(guān)運(yùn)算,運(yùn)算結(jié)果即表示了輸入信號與碼元0和碼元1之間的相關(guān)程度.碼元模板按照采樣倍數(shù)設(shè)置分段長度,相關(guān)運(yùn)算也按照同樣方式分段進(jìn)行。由于碼元模板S0和Sl也是正交的,所以與哪個的運(yùn)算結(jié)果值大,則表明該輸人數(shù)據(jù)代表的是哪個碼元.由于標(biāo)簽返回信號允許有±22%的頻偏,使得分段相干計算的起始位置難以界定.參考文獻(xiàn)[6] 的設(shè)計采用的是分成多組相關(guān)器同時計算的方法進(jìn)行處理,占用FPGA資源較多.更好的方式是綜合運(yùn)用過零檢測,間隔3-4個周期就對分段的起始位置進(jìn)行校正,從而保證了分段計算過程與信號周期始終同步,這樣在不過分增加資源消耗的情況下仍然可以達(dá)到同樣的效果。
4 驗證及分析
根據(jù)上述分析設(shè)計樣機(jī)驗證平臺,其中基帶的數(shù)字信號處理通過Altera CycloneII FPGA完成,實現(xiàn)的功能包括ADC驅(qū)動、FIFO緩沖、CIC濾波以及相關(guān)性判等,協(xié)議流程的處理交由FPGA內(nèi)嵌的軟核CPU完成,上述功能塊按照外設(shè)的方式掛接在軟核CPU內(nèi)部總線上.全部功能塊的設(shè)計以Altera提供的標(biāo)準(zhǔn)IP庫為基礎(chǔ).測試時發(fā)射機(jī)天線端口輸出功率30dBm,工作頻率915MHz,使用7dBi的圓極化天線,標(biāo)簽使用Alien公司產(chǎn)品.設(shè)置標(biāo)簽距離天線8m,控制標(biāo)簽的回傳速率為250kdBs。
ADC采集的原始數(shù)據(jù)曲線如下圖3所示(橫軸是采樣個數(shù),縱軸是采樣數(shù)據(jù)值不同)。由于完整的通信幀數(shù)據(jù)較多,在此僅僅給出包含同步頭和同步碼的I路前半部分?jǐn)?shù)據(jù)及其處理結(jié)果。
圖3 ADC采集的原始數(shù)據(jù)曲線
可以看出,在零中頻接收模擬輸出除了所需要的標(biāo)簽回傳數(shù)據(jù)外,數(shù)據(jù)幀同步頭還混雜了直流偏移干擾以及高頻噪聲.由于距離較遠(yuǎn),有用信號的p-p值僅有110,波形畸變嚴(yán)重,信噪比較差。
經(jīng)過CIC及帶通濾波,可以得到圖4所示的曲線,此時濾波器去除了混雜的噪聲,波形變得比較圓滑整齊,能夠較容易的分辨出數(shù)據(jù)幀的同步頭和數(shù)據(jù)位.圖中同時顯示了過零檢測的解碼曲線(位于圖形下方,方波上邊標(biāo)注的是過零檢測的0和1及其樣本點數(shù)量;下方標(biāo)注解碼結(jié)果。2B4 :0,表示第2字節(jié)的第4位解碼為0),該算法在橫軸坐標(biāo)240左邊出現(xiàn)了解碼判決錯誤(1B5:1,碼元0被判決為1),表明處理畸變干擾能力有限。
圖4 直接過零檢測解碼的效果
同時采用直流偏移校正和相干檢測方法對同一個數(shù)據(jù)進(jìn)行處理,得到的曲線及效果參見圖5。解碼結(jié)果波形顯示算法改善了同步頭的解碼效果。同時,橫軸坐 標(biāo)240左邊被正確的解碼(1B5:0),證明了該算法在遠(yuǎn)距離標(biāo)簽返回信號幅度比較小或者標(biāo)簽信號中值波動的情況下,仍然可以正確獲得EPC數(shù)據(jù)。
圖5 直流偏移校正及相干檢測解碼的效果
5 結(jié)論
本文通過分析零中頻架構(gòu)超高頻RFID讀寫器數(shù)字接收機(jī)設(shè)計中的性能瓶頸,明確了影響接收性能的噪聲干擾、直流偏移及解碼問題的成因及解決思路.從基帶數(shù)字信號處理角度,在過采樣濾波處理基礎(chǔ)上,給出直流偏移校正和相關(guān)解碼等解決辦法.經(jīng)過測試驗證,讀寫器最遠(yuǎn)能夠穩(wěn)定讀取10m左右距離的標(biāo)簽,且能夠自適應(yīng)天饋和環(huán)境的變化,讀取效果比市場上常見產(chǎn)品更為穩(wěn)定可靠.證明達(dá)到了提高讀寫器作用距離的設(shè)計要求。
評論