芯片造腦:科幻照進(jìn)現(xiàn)實?
人腦那自傲、強大而又神秘?zé)o比的信息處理功能一直令人癡迷。也許是緣于這種癡迷,每當(dāng)新的技術(shù)出現(xiàn),它們總會被用來進(jìn)行復(fù)制大腦的嘗試。雖然在這一過程中我們收獲了不少新的信息處理工具,但這些“復(fù)制品”和真正的大腦依然相差甚遠(yuǎn),這也一次次證明了人類對腦的理解還僅處于“兩小兒辯日”的啟蒙階段。
本文引用地址:http://butianyuan.cn/article/263555.htm然而就在最近半年里,“造腦行動”又有了新的進(jìn)展:IBM和高通(Qualcomm)兩大巨頭先后發(fā)布了基于神經(jīng)擬態(tài)技術(shù)的“腦芯片”。IBM的SyNAPSE芯片號稱模擬了一百萬個神經(jīng)元細(xì)胞和超過兩億個神經(jīng)突觸連接,初具人工大腦的規(guī)模。高通公司4月公布的Zeroth芯片也在硅片上高效地模擬了腦神經(jīng)元,裝載了該芯片的機器小車還能運用“受到人腦啟發(fā)的算法”完成尋路、躲避障礙等任務(wù)。如果幾十年前的人穿越過來,恐怕會以為科幻小說全面進(jìn)入生活了。
左:IBM公司于2014年8月推出的SyNAPSE芯片外觀;右:高通Zeroth芯片的宣傳圖
那么,“仿真腦”的時代真的要來臨了嗎?現(xiàn)在下結(jié)論似乎還為時過早。在對人腦的模擬上,科學(xué)家們還面臨著許多困惑和挑戰(zhàn)。下面,就讓我們來看看“造腦”這個科幻題目在現(xiàn)實世界中究竟現(xiàn)狀如何吧。
“神經(jīng)擬態(tài)”芯片英雄譜
仿照生命體的神經(jīng)系統(tǒng)的架構(gòu)來設(shè)計大規(guī)模集成電路(VLSI)的硬件電子技術(shù),被稱為“神經(jīng)擬態(tài)工程”(Neuromorphicengineering),這門工程學(xué)開創(chuàng)于上世紀(jì)80年代。在近40年的發(fā)展中,神經(jīng)擬態(tài)芯片屢有新作,尤其是最近10年,隨著IBM、惠普、高通等電子硬件巨頭的加入,神經(jīng)擬態(tài)領(lǐng)域開始呈現(xiàn)加速賽跑的熱鬧場面。
神經(jīng)擬態(tài)的關(guān)鍵在于制造可以產(chǎn)生神經(jīng)電信號的“擬真神經(jīng)元”,要達(dá)到這一目的,有兩種途徑可走。第一種是利用硅的半導(dǎo)體特性,直接在硅元件上用積累的電壓來模擬神經(jīng)元的膜電位,這種方式被稱為“模擬式神經(jīng)擬態(tài)”。這種方案是神經(jīng)擬態(tài)工程最經(jīng)典的技術(shù)路線,它直接地將神經(jīng)細(xì)胞的信號傳導(dǎo)方式轉(zhuǎn)換到了硅基導(dǎo)體上。用模擬方式制造出來的“神經(jīng)元”能夠輕松達(dá)到和生命體一樣的運算速度,甚至更快。
另一種模擬途徑是制造一塊類似小型電腦的數(shù)字芯片,然后在上面運行神經(jīng)元的仿真程序,由仿真程序負(fù)責(zé)生成類似神經(jīng)沖動的信號,這種方案被稱為“數(shù)字式神經(jīng)擬態(tài)”。開篇提到的IBM公司的SyNAPSE和高通公司的Zeroth芯片采用的都是數(shù)字式的擬態(tài)方案。數(shù)字模擬的優(yōu)勢在于可以靈活采用各種不同的神經(jīng)元模型,例如在擬真度要求較高的應(yīng)用中可以加入神經(jīng)突觸和離子通道的詳細(xì)特性,而在速度要求較高的時候則可以簡化模型來保證速度。數(shù)字方案雖然仿真速度有所下降,但經(jīng)過優(yōu)化后也能達(dá)到和神經(jīng)元一樣或更快的運算速度,而更高的靈活性也讓它成為了神經(jīng)擬態(tài)技術(shù)的熱門選項。
在各種神經(jīng)擬態(tài)芯片中,絕大多數(shù)都混合集成了數(shù)字和模擬這兩種技術(shù),通過優(yōu)勢互補使芯片達(dá)到更好的性能。
造腦的巨大挑戰(zhàn)
現(xiàn)在,已經(jīng)有了相當(dāng)多的“類腦”芯片問世,它們看起來相當(dāng)“酷炫”,但似乎從未能夠撼動傳統(tǒng)計算機芯片的地位。這很大程度上是緣于“造腦”這件任務(wù)所帶來的巨大挑戰(zhàn)。
對很多音樂發(fā)燒友來說,“魔聲(Monster)”這個耳機品牌應(yīng)該不陌生。創(chuàng)立魔聲品牌的是美國加利福尼亞的華裔工程師李美圣(NoelLee)。李先生年輕時對于音樂品質(zhì)的細(xì)微挑剔已經(jīng)到了苛刻的地步,以至于在常人所不注意的線材上都發(fā)現(xiàn)了可以提升音質(zhì)的余地。所以魔聲公司一炮走紅的主打產(chǎn)品其實并不是我們所熟悉的耳機,而是又粗又壯的高端線材(MonsterCable)。魔聲公司在技術(shù)上的歷程引發(fā)了一個思考:高質(zhì)量的信息處理系統(tǒng)往往需要高質(zhì)量的信號通路,傳輸通路的重要性有時甚至?xí)^信息的產(chǎn)生和處理本身。
不幸的是,建立通路在電子信息系統(tǒng)里是比較麻煩也比較昂貴的。如果用電子通路來模仿一個有N個神經(jīng)元的神經(jīng)網(wǎng)絡(luò),那么所有神經(jīng)元之間兩兩互通就需要N2條通路。如果每條通路都用一條物理連接來建立,那么模擬的神經(jīng)元數(shù)量稍微一多,線路就會亂作一團(tuán)亂。目前的半導(dǎo)體芯片技術(shù)基本上還是二維布線,所以在一片硅片上能夠允許的線路資源就更加有限。要想用這樣的通路來實現(xiàn)人腦式的互聯(lián)互通,幾乎一定會被物理規(guī)律打翻在地。
數(shù)據(jù)通路帶來的災(zāi)難
為了繞開物理連接的困境,很多神經(jīng)擬態(tài)芯片采用了“互聯(lián)網(wǎng)式”的方案:先給神經(jīng)元編上“地址”,然后用路由器分發(fā)信息。這種方案雖然避免了紛繁交錯的線路,但它的本質(zhì)是用時間來換空間,如果不想搭出N2條物理通路,那么就得花N2倍的時間來處理路由。隨著模擬神經(jīng)元數(shù)量的增長,始終還是繞不過平方級增長的“維度災(zāi)難”。所以神經(jīng)擬態(tài)芯片成敗的關(guān)鍵往往不是能造出多少個神經(jīng)元,而是怎么高效處理神經(jīng)元之間的信息交互。IBM公司的SyNAPSE芯片集成了2億5千6百萬個突觸連接,這個數(shù)量級的信息交互已經(jīng)算是相當(dāng)了不起的成績。
造腦之路不僅受制于物理規(guī)律,而且在評價標(biāo)準(zhǔn)上也存在不少爭議。世界各地的研究組在造腦課題上研究得很熱鬧:有的強攻仿真神經(jīng)元和神經(jīng)聯(lián)結(jié)的數(shù)量,有的專注神經(jīng)元突觸的分子動力學(xué)建模,有的則側(cè)重大腦的可塑性學(xué)習(xí)能力……然而,不客氣地講,不少“造腦”項目多少有點自己樹靶子自己打的意思。即使這些努力全部宣告成功,可能研制出來的人工腦也只能在研究者自己劃定的條條框框里做點演示而已,它們的功能依然具有很多局限性。
造腦目標(biāo)的困惑
除了技術(shù)上的困難,制造“仿真腦”的目標(biāo)也是一個值得思考的問題。除了純粹用于研究以外,“仿真腦”還能為我們做點什么呢?
當(dāng)今流行的電子設(shè)備和人腦在形態(tài)上沒有半點相似,在計算原理上也基本不搭界,然而這些電子設(shè)備在相當(dāng)一部分任務(wù)中卻表現(xiàn)得相當(dāng)出色。這些任務(wù)包括設(shè)備控制、大規(guī)模批量處理、長時間重復(fù)作業(yè)等等。無論是在自動化生產(chǎn)的車間里,或是運營上千臺網(wǎng)絡(luò)計算機的“服務(wù)器農(nóng)場(serverfarm)”里,甚至在更加新潮的無人管理的大型倉庫里,那些原來由“人腦+人肉”完成的任務(wù)現(xiàn)在都已經(jīng)轉(zhuǎn)交給了機電設(shè)備,它們的高效、精確和可靠已經(jīng)達(dá)到了令人腦難以企及的高度。
這些機械化的任務(wù)無需創(chuàng)造力,而要求操作者務(wù)必精確、不能疲勞,它們簡直天生就是給機器設(shè)計的。而相比之下,探索、學(xué)習(xí)和適應(yīng)環(huán)境才是人腦真正有優(yōu)勢的領(lǐng)域。如果在“仿真腦”問世時,人們還是把傳統(tǒng)的機械化任務(wù)交給它們,那么“仿真”恐怕也就失去了意義。
無人值守,基于蜂巢智能的現(xiàn)代化倉庫(KivaSystems,LLC.)
學(xué)習(xí)創(chuàng)造:“人腦模式”也未必更好
然而,在學(xué)習(xí)和創(chuàng)造領(lǐng)域,模仿“人腦模式”也未必比現(xiàn)有的計算機技術(shù)更有優(yōu)勢。
隨著“大數(shù)據(jù)”的概念席卷全球,在實驗室里醞釀多年的機器學(xué)習(xí)技術(shù)終于走出實驗室,走進(jìn)實際應(yīng)用。很多原本被認(rèn)為是“人腦獨霸”的工作,譬如人臉識別、國際象棋、音樂創(chuàng)作等等,現(xiàn)在也慢慢出現(xiàn)了被電腦代庖的苗頭。而完成這些任務(wù)的電腦,也并沒有采取人腦的信息處理模式。
為什么諸如探索、學(xué)習(xí)、創(chuàng)造這樣本應(yīng)由人腦固守的領(lǐng)地也會被攻破?這要追溯到人腦的一個底層缺陷——記憶能力不足。
大腦的基本組分是神經(jīng)元細(xì)胞,這種細(xì)胞可以組成高效的信息網(wǎng)絡(luò),但它并不是很好的記憶元件。神經(jīng)元細(xì)胞從功能上來說像是一個傳聲筒,你這頭傳話進(jìn)去,它在另一頭變個聲音傳話出來。這種類似“濾波器”的結(jié)構(gòu)能夠迅速完成一些信號變換,但是卻不適用于長期儲存信息。相比之下,電子元件或者磁性元件能夠長期保持在“電位高”、“電位低”或者“磁極南”、“磁極北”的狀態(tài),信息一旦寫入就很久不會遺忘。正因為如此,計算機天生就能做到“過目不忘”,而人腦則要付出很多精力來鞏固記憶。
除此以外,電磁元件的狀態(tài)只要通過簡單的操作就能在幾微秒內(nèi)翻轉(zhuǎn)變換,所以信息不但存得久,而且可以迅速進(jìn)行更改。然而,在神經(jīng)元細(xì)胞構(gòu)成的大腦網(wǎng)絡(luò)中,要想快速改變狀態(tài)就不那么容易了。一種公認(rèn)的方法是通過“神經(jīng)可塑性”(neuroplasticity)來改變神經(jīng)元的活性,但這種機制需要細(xì)胞的輸入端和輸出端發(fā)生成千上萬次的脈沖耦合,當(dāng)這些巧合發(fā)生之后才能夠?qū)ι窠?jīng)突觸的強度有所影響,耗時也從幾分鐘到幾十年不等。所以從存入信息的速度上來說,計算機天生“一目十行”,而人若能如此估計早就上了“最強大腦”。
像識臉、下棋、作曲這些任務(wù)固然需要學(xué)習(xí)、聯(lián)想和創(chuàng)造,但更重要的其實是積累龐大的信息數(shù)據(jù)庫作為支持。而由于長久記憶和快速固化能力的先天不足,人腦要花超過電腦很多倍的時間才能儲備足夠的數(shù)據(jù)。如果在仿真大腦的研究領(lǐng)域,記憶能力不足的問題沒有得到解決,那么“仿真腦”在這些學(xué)習(xí)任務(wù)上也就沒了優(yōu)勢。
人腦至今領(lǐng)跑的項目:運動控制
那么在人腦的功能里,究竟有哪些是電子設(shè)備至今還難以企及的呢?孤懸于海中的一盞明燈乃是人腦對肢體運動的控制。
人體的運動神經(jīng)信號傳輸質(zhì)量其實遠(yuǎn)遠(yuǎn)比不上電子設(shè)備。人體中的神經(jīng)脈沖信號常年經(jīng)受著各種噪聲和擾動的影響,如果插管偵聽的話就會發(fā)現(xiàn)神經(jīng)元脈沖的規(guī)則程度經(jīng)常比“收聽敵臺”好不了多少。此外,神經(jīng)信號的延遲也十分可觀,神經(jīng)脈沖的傳播速度平均下來只有幾十米/秒,就算完成一次最簡單的脊髓反射也需要花費掉30毫秒之巨。而在這30毫秒之內(nèi),一個不算太高端的嵌入式控制器(假定1000Hz采樣率)已經(jīng)完成了30次微調(diào)控。
然而,在這些巨大的劣勢之下,人類居然還能完成各種跑跳投捻推揉,行動的過程中還能根據(jù)外界環(huán)境的變化實時調(diào)節(jié)動作。這些重重挑戰(zhàn)簡直就是機械疙瘩和硅片腦袋的噩夢。
如果真要用芯片來制造“仿真腦”,運動能力大概會是一個不錯的研究方向。而仿真神經(jīng)網(wǎng)絡(luò)能否讓機器人運動自如,這還需要更多研究才能下結(jié)論。
造腦的終極走向
腦神經(jīng)科學(xué)最近40年來得到了突飛猛進(jìn)的發(fā)展,大腦的神秘面紗已經(jīng)一點點被揭開。與此同時,計算機科學(xué)同樣也是兵多將廣,很多傳統(tǒng)概念中“人腦專屬”的功能也在非人腦體系中得以實現(xiàn)。在腦神經(jīng)科學(xué)和計算機科學(xué)的雙重夾擊下,用電子技術(shù)來“重造大腦”這個比較古老也比較另類的技術(shù)流派,它的目標(biāo)需要重新定義,帶來的意義也必須重新思考。
從研究角度講,“擬真大腦”應(yīng)該幫助人類揭開腦科學(xué)中的謎團(tuán)。而從實用技術(shù)角度看,造腦的目的則應(yīng)該是剝離出人腦真正強勢的功能,制造出超越人腦且超越電腦的新體制智能設(shè)備。如前所述,我們對于大腦的熱情膜拜在一項項工程突破面前開始降溫,但在肢體運動控制這樣的領(lǐng)域,“人腦模式”的表現(xiàn)依然值得期待。
要想制造出具有人腦般性能的芯片,研究者們還有很長的路要走。不過從另外一個角度來看,人們似乎已經(jīng)在無意之中造出了像人腦一般運行的事物——互聯(lián)網(wǎng)。其實,整個互聯(lián)網(wǎng)越來越像是一個人腦:結(jié)點的數(shù)量規(guī)模也相當(dāng)龐大;各個節(jié)點之間任意互聯(lián)、高度協(xié)作;網(wǎng)絡(luò)結(jié)構(gòu)根據(jù)實際需求在不斷自我調(diào)整;結(jié)點之間完全獨立并發(fā)、互相協(xié)調(diào)但互不隸屬。2012年全球估計接入互聯(lián)網(wǎng)的電腦數(shù)量是10億左右,雖然和大腦的幾百億神經(jīng)元還有差距,但也算是初具“神經(jīng)網(wǎng)絡(luò)”的規(guī)模。我們在這里為了芯片造腦而絞盡腦汁的時候,整個人類說不定已經(jīng)自組織成了另一個尺度上的“大腦”呢。
pic相關(guān)文章:pic是什么
路由器相關(guān)文章:路由器工作原理
路由器相關(guān)文章:路由器工作原理
離子色譜儀相關(guān)文章:離子色譜儀原理
評論